
WE CREATE MOTION

Programming
Manual

Motion Controller V3.0

Motion Control Sys-
teme V3.0

EN

Imprint

2

Version:
4th edition, 28.02.2024

Copyright
by Dr. Fritz Faulhaber GmbH & Co. KG
Faulhaberstraße 1 · 71101 Schönaich

All rights reserved, including those to the translation.
No part of this description may be duplicated, reproduced,
stored in an information system or processed or
transferred in any other form without prior express written
permission of Dr. Fritz Faulhaber GmbH & Co. KG.

This document has been prepared with care.
Dr. Fritz Faulhaber GmbH & Co. KG cannot accept any
liability for any errors in this document or for the
consequences of such errors. Equally, no liability can be
accepted for direct or consequential damages resulting
from improper use of the equipment.

The relevant regulations regarding safety engineering
and interference suppression as well as the requirements
specified in this document are to be noted and followed
when using the software.

Subject to change without notice.

The respective current version of this technical manual is
available on FAULHABER's internet site:
www.faulhaber.com

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

https://www.faulhaber.com

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Content

3

1 About this document ... 4

1.1 Validity of this document .. 4

1.2 Associated documents .. 4

1.3 List of abbreviations ... 4

1.4 Symbols and designations .. 5

2 Introduction .. 6

3 Characteristics of the programming language .. 7

3.1 Command set .. 7

3.2 Operators and special characters .. 12

3.3 Variables ... 13

3.3.1 Global variables with fixed address ... 13
3.3.2 Allocated global and local variables.. 14

3.4 Instructions for creating programs .. 14

4 Developing sequence programs using the Motion Manager 15

4.1 Edit program ... 17

4.1.1 File management .. 17
4.1.2 File editing... 17

4.2 Load the program to the controller and execute it ... 18

4.3 Program Debug .. 18

5 Control of sequence programs .. 20

5.1 Control via the interface .. 20

5.2 Error handling .. 21

5.3 Start the sequence program automatically .. 22

5.4 Protecting sequence programs .. 22

5.5 Data exchange with sequence programs .. 23

6 FAULHABER Motion library ... 24

6.1 MotionParameters .. 24

6.2 MotionMacros .. 25

6.3 MotionFunctions .. 25

6.4 MyControlLib.bi .. 26

7 Example programs ... 27

7.1 Simple cyclic movement using the library functions .. 27

7.2 Use of sequences of steps for program design ... 28

7.2.1 Reference run with subsequent automatic change to positioning
operation... 28

7.2.2 Reference run with subsequent automatic change to positioning
operation and start-stop function ... 31

7.3 Event handling ... 33

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

About this document

4

1 About this document

1.1 Validity of this document
This document describes the programming of sequence programs for drive electronics of
the Motion Controller and Motion Control Systems of the V3.0 family using the FAULHABER
Motion Manager 7.

This document is intended for software developers with programming experience, and for
drive technology project engineers.

All data in this document relate to the standard versions of the drives. Changes relating to
customer-specific versions can be found in the attached sheet.

1.2 Associated documents
For certain actions during commissioning and operation of FAULHABER products additional
information from the following manuals is useful:

These manuals can be downloaded in pdf format from the web page www.faulhaber.com.

1.3 List of abbreviations

Manual Description

Motion Manager 7 Operating instructions for FAULHABER Motion Manager PC software

Quick start guide Description of the first steps for commissioning and operation of FAULHABER Motion
Controllers

Drive functions Description of the operating modes and functions of the drive

Abbreviation Meaning

BASIC Beginner’s All-Purpose Symbolic Instruction Code

EEPROM Electrically Erasable Programmable Read-Only Memory

Sxx Data type signed (negative and positive numbers) with bit size xx

Uxx Data type unsigned (positive numbers) with bit size xx

https://www.faulhaber.com/de/support/bedienungsanleitungen

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

About this document

5

1.4 Symbols and designations

NOTICE!
Risk of damage.

 Measures for avoidance

 Pre-requirement for a requested action

1. First step for a requested action

 Result of a step

2. Second step of a requested action

 Result of an action

 Request for a single-step action

Instructions for understanding or optimizing the operational procedures

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Introduction

6

2 Introduction
Sequence programs can be transferred to controller by the FAULHABER Motion Manager
and can be executed directly by the controller. This enables e.g. stand-alone operation
without a supervisory controller or semi-autonomous execution of smaller program
sequences.

Sequence programs are programmed in the BASIC programming language, with FAUL-
HABER-specific extensions.

8 independent memory areas for user programs are available. Optionally, one program can
also be started automatically at boot-up.

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

7

3 Characteristics of the programming language
 BASIC interpreter with FAULHABER-specific extensions

 Function calls

 No line numbers; jumps are to jump labels

 Jump labels are placed at the beginning of a line and start with a colon

 Distinction between upper and lower case characters (commands always in upper case)

 Read and write access to objects in the object dictionary

 Capability to respond to events during normal execution of a program

 Timer for time measurement and wait loops

 Arithmetic, comparison and bit operators

 Special character $ for values expressed as hexadecimal numbers

 Maximum length of all programs: 16 kByte

 26 global standard 32-bit variables a…z (can be stored permanently)

 26 global symbolic 32-bit variables (can be freely named)

 Local symbolic variables (can be freely named)

3.1 Command set
Tab. 1: Standard BASIC command set
Command Function Example

REM… Comment.

Placed at the beginning of a line and applies
until the end of the line.

REM comment

END Exit program END

GOTO… Jump to the specified jump label.

The following constructs may not be exited
with GOTO:

 IF…THEN…ELSE…END IF
 GOSUB…RETURN
 FOR…TO…NEXT…

GOTO Jumps are not supported in sub-func-
tions (FUNCTION…).

GOTO Start

GOSUB…

…

RETURN

Jump to a sub-program at the specified label.
After execution, jump back to the calling posi-
tion.

No GOTO jump may be performed from a sub-
program.

GOSUB Step1

…

:Step1

RETURN

FOR…TO…

…

NEXT…

Programming a loop.

No conditional GOTO jump may be performed
from a FOR loop.

FOR i = 1 TO 10

…

NEXT i

DO

…

LOOP UNTIL…

Loop with check of the loop condition at the
end of the loop.

DO

...

LOOP UNTIL a = 5

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

8

DO

…

LOOP

Loop without check of a loop condition.

Exit the loop with EXIT.

DO

...

LOOP

DO

…

LOOP WHILE…

Loop with check of the loop condition at the
end of the loop.

DO

...

LOOP WHILE stop = 0

DO WHILE…

…

LOOP

Loop with check of the loop condition at the
start of the loop.

DO WHILE speed > 500

...

LOOP

EXIT… Jump from a loop without having reached the
end of the loop.

The keyword of the loop must be specified.

EXIT FOR

EXIT DO

IF…THEN…

ELSEIF…THEN…

ELSE…

END IF

Programming a branch.

No GOTO jump may be performed from an IF
instruction.

IF a > 3 THEN

 b = 1

ELSE

b = 0

END IF

IF…THEN GOTO…

IF…THEN GOSUB…

IF…THEN <Name>()

Conditional jump or branch into a sub-pro-
gram. Used in a line without END IF.

The following constructs may not be exited
with GOTO:

 IF…THEN…ELSE…END IF
 GOSUB…RETURN
 FOR…TO…NEXT…

IF z=1 THEN GOSUB Step1

IF…THEN EXIT FOR

IF…THEN EXIT EVT

Jump out of a FOR loop or an event routine.
Used in a line without ENDIF.

May not be used in the following constructs:

 IF…THEN…ELSE…END IF
 GOSUB…RETURN

FOR a = 1 TO 5

 IF x = 1 THEN EXIT FOR

NEXT a

IF…THEN
EXIT GOSUB

Jump out of a sub-program. Used in a line with-
out ENDIF.

May not be used in the following constructs:

 IF…THEN…ELSE…END IF
 GOSUB…RETURN

:Sub1

IF x = 1 THEN EXIT GOSUB

RETURN

Command Function Example

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

9

Tab. 2: FAULHABER command extension

FUNCTION…

…

RETURN…

END FUNCTION

Definition of a sub-function. The function is
called in the program text via its name.

Local variables can be allocated via the key
word DIM.

Parameters can be passed as numbers or with
variables.

The sub-function can return a numeric result
with the key word RETURN.

GOTO jumps are not supported.

Each sub-function must be ended with the key
word END FUNCTION.

Defintion

FUNCTION <Name> (Parame-
ter1, Parameter2)

DIM result

…

RETURN result

END FUNCTION

Call

<Name> (1, 5)

DIM… Allocates a variable with symbolic name.

 If DIM is used outside of a sub-function
(FUNCTION), a global variable is allocated
that can also be used under this name by all
sub-functions.
Global symbolic variables can be read and
changed in the development environment
integrated in the Motion Manager via their
name.

 If DIM is used within a sub-function (FUNC-
TION), a local variable is allocated that is
valid only within the sub-function.
Local variables can be read and changed in
the development environment integrated in
the Motion Manager as long as the sub-
function itself is active (e.g., stopped at a
breakpoint or in single-step mode).

DIM Statusword

Command Function Example

SETOBJ… Write an object in the object dictionary.

Syntax: SETOBJ <Index>.<Subindex> = <varia-
ble or value>

SETOBJ $6083.$00 = 500

GETOBJ… Read an object in the object dictionary.

Syntax: <variable> = GETOBJ <Index>.<Subin-
dex>

a = GETOBJ $6083.$00

DEF_EVT_VAR… Defines a variable which, when the event
occurs, returns the value of the event status
bit mask.

DEF_EVT_VAR e

EN_EVT… Activation of an event routine which is trig-
gered by the device state signalled by a
change in the object 0x2324.01 (event han-
dling).

Note: Only one event routine can be active.

Syntax: EN_EVT <bit mask>,<event mark>

EN_EVT $ffffffff, EvHandler

DI_EVT Deactivation of all events for processing that
is being performed in parallel.

Syntax: DI_EVT

DI_EVT

RET_EVT Jump back from an event routine.

Syntax: RET_EVT

: EvHandler

RET_EVT

SAVE… Permanent saving of one or more variables in
the EEPROM (comma-separated list).

Syntax: SAVE <variable1<,variable2,...>>

SAVE a, b, z

Command Function Example

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

10

LOAD… Loading one or more previously saved varia-
bles from the EEPROM (comma-separated
list).

Syntax: LOAD <variable1<,variable2,...>>

LOAD a, b, z

DEF_TIM_VAR… Defines a variable to be used as a timer.

Syntax: DEF_TIM_VAR <variable>

DEF_TIM_VAR t

START_TIM… Starts the timer with a value in ms (or stops
the timer if the value = 0).

Syntax: START_TIM <variable or value>

When the specified time has elapsed, the
timer variable is 1, otherwise it is 0 (timer still
running).

START_TIM 3000

IF t = 1 THEN

ENDIF

DEF_CYC_VAR… Defines a variable to be used as a 1 ms cycle
counter. This can be used to, e.g., perform
time measurements. The counter runs a maxi-
mum of 24 days and then stops with –1.

Syntax: DEF_CYC_VAR <variable>

DEF_CYC_VAR z

START_CYC Starts the cycle counter with the value 0.

Syntax: START_CYC

START_CYC

STOP_CYC Stops the cycle counter. The current counter
state is retained in the variable defined for
this purpose and can be processed further.

Syntax: STOP_CYC

STOP_CYC

DELAY… Waiting time in ms. The program is not pro-
cessed further during the waiting time.

Syntax: DELAY <variable or value>

DELAY 200

#DEFINE… Assigns a value to a symbolic designation.

Syntax: #DEFINE <symbol> <value>

This key word can also be used to define
more complex macros that can be used in the
program text via the macro names.

Syntax: #DEFINE <macro> <expression>

If a macro name is prefixed with "MC.", the
macro is available in the autocompletion of
the Motion Manager editor. The list of availa-
ble macros appears after entering "MC."

#DEFINE MaxSpeed 2000

#DEFINE MC.IsTargetReached
((GETOBJ $6041.00 & $400) = $400)

If MC.IsTargetReached THEN…

#INCLUDE… Instructs the development environment to
link another file to the program (Basic-
Include file *.bi).

Sets of pre-defined symbolic names or func-
tion libraries can thereby be linked and
reused.

If no path is specified, include files are
searched for in either the Motion Manager
ProgramData directory or in the same folder
as the corresponding .bas file. Include files
from other folders can be referenced by spec-
ifying an absolute path.

Syntax: #INCLUDE <[path] filename>

#INCLUDE "MotionParameters.bi"

Command Function Example

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

11

EVENT… Reports an event to the event broker (see
drive functions manual).

This can be used either to set the event flag
in device status word 0x2324.01 or to start a
recording of the trace recorder.

Any 16 bit value is used as a parameter
passed as event code that contains the event
identifies.

Event code 0 resets the event.

Events can only be set again if the event has
been canceled with code 0 in the meantime
or via different event codes.

The set event code cannot be read back via
the object dictionary.

EVENT 1

EVENT 0

ERROR… This command can be used to set bit 8 in the
FAULHABER error word 0x2320.00.

The parameter passed on is a 16-bit error
code, which can be read out in object
0x2322.01.

Program processing continues normally after
the error is signaled in the FAULHABER error
word.

An unexpected situation can be signaled
using the ERROR keyword. Depending on the
error handling setting (masks below
0x2321.xx), the drive can also be stopped
automatically.

By default, an EMCY message with the error
code 0xFF30 is generated via the error moni-
toring unit.

Error code 0 resets the error status.

ERROR $1234

RESET This command can be used to completely
reinitialize the Motion Controller from a
sequence program. All control and communi-
cation is immediately interrupted. The device
restarts similar to after a power cycle.

RESET

Command Function Example

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

12

3.2 Operators and special characters

Arithmetic operators

Addition +

Subtraction -

Multiplication *

Division /

Modulo (remainder) %

Logic operators

And operation AND

Or operation OR

Inversion NOT

Comparison operators

Greater than >

Less than <

Equal to =

Not equal to <>

Greater than or equal to >=

Less than or equal to <=

Bit operators

Bit-wise AND &

Bit-wise OR |

Bit-wise EXCLUSIVE OR (XOR) ^

Bit-wise inversion ~

Bit-wise moving of a variable to the left <<

Bit-wise moving of a variable to the right >>

Assignment operator

Assignment operator =

Special character Meaning

() Used for mathematical operators

, Used in EN_EVT and SAVE/LOAD

. Delimiting characters in SETOBJ /GETOBJ

$ Hexadecimal numbers

: Jump label, placed at the start of the line

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

13

3.3 Variables
Three variable types are available in sequence programs:

 Global variables with fixed address (see chap. 3.3.1, p. 13)

 Allocated global variables (see chap. 3.3.2, p. 14)

 Allocated local variables (see chap. 3.3.2, p. 14)

3.3.1 Global variables with fixed address

Variables that are referenced via letters a…z are available globally in all program areas.
Each change is visible globally.

Variables with fixed address have the following properties:

 They can be saved and loaded in the EEPROM using the LOAD and SAVE commands.

 They can be used as timer variables (DEF_TIM_VAR) or event variables (DEF_EVT_VAR)
(only applies to variables with fixed address).

 They can be addressed via object 0x3005 directly via the communication interface.

 They can be mapped to PDOs.

 They can be assigned a symbolic name via #DEFINE. These symbolic names can be used
everywhere in the program text.

Example:

#DEFINE RefSpeed a
#DEFINE MC.TagetVelocity SETOBJ $60FF.00

RefSpeed = 2000
MC.TagetVelocity = RefSpeed
…
SAVE RefSpeed

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Characteristics of the programming language

14

3.3.2 Allocated global and local variables

With the key word DIM <variable name>, a variable can be created with a symbolic name.

Example:

DIM Statusword

 Global variables:
If DIM is used outside of a sub-function, a variable from a set of a maximum of 26 global
variables is thereby allocated. The variable can be used by all functions. The symbolic
name can be used like a number in all expressions.

 Local variables:
If DIM is used within a sub-function, only a local variable valid within this sub-function is
thereby allocated. Transfer parameters of sub-functions are handled as local variables.
The maximum number of local variables is 26 per sub-function.

Allocated variables cannot be used as timer variables (DEF_TIM_VAR) or event variables
(DEF_EVT_VAR). They cannot be directly initialised via LOAD or SAVE from the EEPROM nor
can they be stored there.

In the Motion Manager, it is possible to access allocated variables via their symbolic names.
Local variables can only be accessed within the function in which the variable is defined.

3.4 Instructions for creating programs
 A sequence program should basically be structured as a step chain with a main loop

covering the entire execution code (see chap. 7.2, p. 28). Wait loops with conditional
jumps to specific events are not possible.

 Sequence programs are created and edited using the FAULHABER Motion Manager.

 Before downloading a sequence program to the controller, the FAULHABER Motion
Manager performs a pre-processing step in order for instance to determine the
addresses of the jump labels and the necessary memory size.

 FAULHABER Motion Manager offers the capability not only to create sequence pro-
grams, edit them and transfer them to the controller, but also to check for program-
ming errors and correct them (debugging options).

 Own function libraries can be developed and linked as basic include files (*.bi) in a
sequence program.
It is recommended that these libraries first be created as a BAS file and the functions
outsourced to an include file only after completion of development and testing. The
Motion Manager offers no debugging options for include files.

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Developing sequence programs using the Motion Manager

15

4 Developing sequence programs using the
Motion Manager
The FAULHABER Motion Manager 7 offers an integrated development environment for
sequence programs in the programming area. The development environment offers the fol-
lowing facilities:

 Syntax highlighting

 Loading, displaying, and editing sequence programs from the device memory and from
the PC memory

 Start individual sequence programs

 Stop the active sequence program

 Pause the active sequence program

 Single step execution

 Definition of a breakpoint

 Display the current program status and the current program line

 Monitor and change the contents of variables

 Read protection by means of an access code

 Code modules for use in your own programs

 Autocompletion

 Automatic syntax check in the background

 Setting an auto-start program

Fig. 1: Motion Manager 7 – Programming

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Developing sequence programs using the Motion Manager

16

Tab. 3: Editor button functions
Button Designation Function

Run Download sequence program to the controller and execute it.

Step Execute the sequence program in single steps or continue.

Halt Pause the sequence program.

Stop End the sequence program.

Download Download the sequence program to the controller and save it without executing it.

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Developing sequence programs using the Motion Manager

17

4.1 Edit program

4.1.1 File management

 A new program is created using the New file button and the selection Sequence pro-
gram file (*.bas) and displayed in a new tab with a prepared file header.

 An existing program is loaded using the Open file button and displayed in a new tab.

 Sample programs prepared by FAULHABER can be loaded via the extension menu (...)
of the file management and selection of Examples.

 If newly loaded or created files are saved, executed, or downloaded to the controller, a
file name is asked for, under which the file is then stored in the project folder for the
respective drive. The file then appears in the file management in the left area of the
programming environment.
 Using the file management context menu, you can, among other things, change the

program number assignment or delete the program from the device memory.

 Using the save button in the project area, a downloaded sequence program is per-
manently saved in the device and in the project folder and assigned to a program
number.

 Sequence programs stored in the device are automatically read out when a drive is
added to a project. If an associated source file is found in the project folder, it will
be copied to the drive's project folder and displayed in the file management. Other-
wise, an .out file will be displayed containing the program content as stored in the
device.

Editing an .out file is not possible. However, a copy with the ending .bas can be cre-
ated. This means that the program is translated back, if possible, for post-process-
ing. The device memory can subsequently be read out using the file management
extension menu.

The .out files can be used to transfer sequence programs unchanged to other drives.

4.1.2 File editing

 Comment lines that start with ' are saved in the file only for purposes of documentation
and are not downloaded to the controller.

 The content of the files that are referenced via #INCLUDE is merged with the actual pro-
gram code prior to transfer to the controller.

 Macro commands and symbolic variables specified in the program are replaced with the
expressions stored with #DEFINE and the internal variables allocated with DIM prior to
transfer to the controller.

 For user support, there are code templates on the right side of the editor that can be
dragged into your own program with the mouse and adapted.

 If the automatic syntax check is activated (extension menu of the file tab), detected syn-
tax errors are displayed underlined in red.

 A context menu for further Editor functions can be opened with the right mouse but-
ton. In this way e.g., an include file specified in the program code can be opened or
jumped to the location of a function or macro definition.

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Developing sequence programs using the Motion Manager

18

4.2 Load the program to the controller and execute it
 Pressing the Run button downloads the finished program to the controller and immedi-

ately executes it.

 The file management displays various states of the program:

 After execution has been started, the editor area switches into debug mode (with a dif-
ferent background colour). This mode does not allow program editing.

 If errors occur whilst running the program, execution is interrupted and the last line
executed is highlighted in red.

 To return to program edit mode, program execution must be ended by pressing the
Stop button.

4.3 Program Debug
The following debugging options are available for troubleshooting in sequence programs:

 Pause the program at the current execution position (Pause button):
 The active line is highlighted in the editor. If the program is currently processing a

function in a linked file, the calling location in the main file is marked.

 The edit area remains inactive.

 After a Pause the program can either be continued via Run or executed further in
single steps via Step. Pressing Stop reverts to program edit mode.

 Executing the program further in single steps (Step button):
 Only the next program line is executed.

 The new active line is highlighted in the editor.

 The edit area remains inactive.

 After Step the program can either be continued via Run or executed further in sin-
gle steps via Step. Pressing Stop reverts to program edit mode.

 Pausing the program at a breakpoint:
 A breakpoint can be established by clicking on the desired line number at the left-

hand edge of the window.

 Program execution is paused when it reaches this line. It can then be continued via
Run or Step. Pressing Stop reverts to program edit mode.

 Clicking on the breakpoint at the left-hand edge of the window deletes the break-
point. Until this has been done, no further breakpoint can be established.

 A breakpoint can be established before a program is started and also during pro-
gram execution.

Display Description

* The file has been transferred, but not yet permanently saved in the device
(new program in the RAM).

P1 The file is stored in storage location 1.

P1* The program has been re-transferred, but has not yet been re-saved (changed
program in RAM)

File name in bold font style Active program in the device.

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Developing sequence programs using the Motion Manager

19

 Investigating and changing the contents of variables:
 In the programming tools on the right edge of the editor there is the Program vari-

ables area. The globally defined symbolic variables and the standard variables a…z
can be selected at any time from the variable list and displayed and changed there.
Local variables can only be accessed if the program has stopped in the respective
function.

 Examining the call stack:
 In the programming tools on the right edge of the editor there is the Call stack

area. In addition to the current line of a stopped program, the numbers of the lines
in the call sequence of functions are also displayed.

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Control of sequence programs

20

5 Control of sequence programs
A saved sequence program can be started by a host computer via the interface, or automat-
ically when the controller is booted up.

5.1 Control via the interface
The execution of sequence programs can be controlled and monitored by a supervisory
computer, via the object 0x3001.

Tab. 4: Current Control Parameter Set
Index Subindex Name Type Attr. Meaning

0x3001 0 Number of
Entries

U8 ro Number of object entries

1 Program Control U8 rw Control of the sequence program activated via 0x3001.02
or 0x3002.00:

 1: Load the activated program from the EEPROM
(Load)

 2: Start or continue the loaded program (Run)
 3: Execute the individual program line (Step)
 4: Pause the running program (Break)
 5: End the running program (Terminate)

2 Program Num-
ber

U8 rw Activate the sequence program at program number

3 Actual Position U16 ro Address of the line currently being executed

4 Actual Program
State

U8 ro Current status of the program:

 0: No action (Idle)
 1: Program is currently being loaded from the EEPROM

(Reading)
 2: Program is currently being saved to the EEPROM

(Saving)
 3: Program is currently being deleted (Deleting)
 4: Program is currently being executed (Running)
 5: Program paused (Halted)

8 Error State U8 ro Error status:

 0: No error (No Error)
 1: Syntax error (Parsing Error)
 2: Error accessing the EEPROM (EEPROM Access Error)

9 Error Code U16 ro Detailed error code in the event of a syntax error
(see chap. 5.2, p. 21)

Before a new program is loaded, any program already running must be ended.

Pseudo-code:

 If 0x3001.04 = 4 (Running) or 0x3001.04 = 5 (Halted), then 0x3001.01 = 5 (Termi-
nate)

 Wait until 0x3001.04 = 0 (Idle)

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Control of sequence programs

21

Example for loading and running a sequence program in program number 1:

1. Select program 1:

 0x3001.02 = 1 (P1)

2. Load program:

 0x3001.01 = 1 (Load)

 Wait until 0x3001.04 = 0 (no longer Reading).

3. Run program:

 0x3001.01 = 2 (Run)

 Program 1 is loaded and will be run.

5.2 Error handling
Errors that occur during program execution are returned as an error code in object
0x3001.09.

If an error occurs, the following actions are triggered automatically:

 Program execution is ended.

 The detailed error code is returned in object 0x3001.09 (see Tab. 5).

 A calculation error (bit 12) is set in FAULHABER error word 0x2320.00.

When starting a new program, the error code in object 0x3001.09 and calculation error in
error word 0x2320.00 are reset.

Tab. 5: Error codes for 0x3001.09

Error word 0x2320.00 can be used to automatically trigger further actions in the event
of an error. For example, the drive can be switched off automatically.

Code Error Meaning Remedy

0 No error No error –

1 Generic error General error Check syntax.

3 Unexpected token The character was not expected at this loca-
tion.

Check syntax.

4 Missing return value A function was ended without RETURN even
though a return value was expected.

Add RETURN instruction.

6 End of parsing mem-
ory

Nested function calls using too much memory.  Reduce nesting depth.
 Use shorter calling lines.

7 Too many variables The chain of called functions results in too
many local variables being used.

Reduce program complexity

8 Illegal variable type No variables created via DIM can be used for
the following functions:

 Special functions of the timer
 Special functions of event processing
 SAVE
 LOAD

Use manually created variables
a…z.

9 Function stack over-
flow

The nesting depth of the function calls is too
high. Maximum 15 call levels are supported.

Reduce nesting depth.

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Control of sequence programs

22

5.3 Start the sequence program automatically
Object 0x3002.00 allows input of a program number; when the controller is booted up this
program will be started automatically.

Tab. 6: Autostart Program Number

5.4 Protecting sequence programs
With object 0x3003.00, a 32-bit key can be set that protects the programs stored in the con-
troller against unauthorized access.

If a 0x3003.00 ≠ 0 code was set and the parameters of the controller then saved, the stored
sequence programs can then only be read out if the code is entered again.

Tab. 7: Access Code

10 Nested condition
overflow

The nesting depth of conditions such as IF is
too high. A depth of max. 15 levels is sup-
ported.

Reduce nesting depth.

11 Division by 0

12 Event while in Event An event was triggered while event process-
ing was still active. The event cannot be pro-
cessed.

Reduce trigger frequency.

13 RET_EVT while not in
event

RET was used outside of an event. Only use RET to jump out of
events.

14 ELSE or END IF with-
out IF

The ELSE or END IF command was detected
without the corresponding IF.

Check syntax.

15 Wrong variable used
in NEXT token

The variable used to call NEXT does not corre-
spond to that from the FOR call.

Check syntax.

16 GOTO not supported
here

GOTO is not supported within functions. Do not use GOTO in functions.

17 Illegal object The object used for GETOBJ or SETOBJ does
not exist or does not support the access.

Check syntax.

18 RETURN while not in
SUB or FUNCTION

A RETURN was detected without first having
entered in a sub-function.

Check syntax.

Code Error Meaning Remedy

Index Subindex Name Type Attr. Meaning

0x3002 0 Autostart Pro-
gram Number

U8 rw Program number of the sequence program that will be
started automatically.

This function is also available in the context menu of file management in Motion Man-
ager (Start automatically).

Index Subindex Name Type Attr. Meaning

0x3003 0 Access Code U32 ro 32-bit key for protecting the programs stored in the con-
troller against unauthorized access.

This function is also available in the file management extension menu in Motion Man-
ager (Lock device memory).

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Control of sequence programs

23

5.5 Data exchange with sequence programs
Data exchange via object 0x3004
The program variables a to z can also be used for data exchange between the sequence
program and the supervisory computer. Object 0x3004.01 can be used to select a variable
and object 0x3004.02 to read or write its value.

Tab. 8: Variable Access

Data exchange via object 0x3005
Individual standard variables can be directly accessed via the sub-indices of object 0x3005.
The variables can thereby be, e.g., recorded or mapped to a PDO. Not included here are var-
iables that are used for event handlers, timers or counters.

Tab. 9: Debug User Program

Index Subindex Name Type Attr. Meaning

0x3004 0 Number of
entries

U8 ro Number of object entries

1 Variable index U8 rw Variable index

 0…25 = standard variables a…z
 32 + (0…25) = global internal variables
 128 + (0…25) = local internal variables

2 Variable value S32 rw Variable value

Index Subindex Name Type Attr. Meaning

0x3005 0 Number of
entries

U8 ro Number of object entries

1…26 User prog varia-
ble a…z

S32 rw Values of variables a…z

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

FAULHABER Motion library

24

6 FAULHABER Motion library
Some supporting files are delivered with FAULHABER Motion Manager 7:

System files
The system files are stored in the Motion Manager installation area and are automatically
integrated into new files. They cannot be changed.

The file can be opened by right-clicking on the file name in the #INCLUDE line of the pro-
gram code.

Example files
The example files are stored under Public Documents in the folder \Users\Public\Docu-
ments\Faulhaber\Motion Manager 7\Examples\MC Basic.

The files can be loaded via the file management extension menu in the Motion Manager
and saved in the drive's project folder for further processing.

6.1 MotionParameters
The MotionParameters.bi file contains symbolic definitions for typical parameters, e.g.:

#DEFINE Statusword $6041.00

The parameters can then be accessed in the program using the symbolic names.

Example:

File Description

MotionParameters.bi Pre-defined assignment of symbolic parameter names with values, e.g., #DEFINE Sta-
tusword $6041.00.

See chap. 6.1, p. 24.

 MotionMacros.bi Pre-defined macros for directly accessing parameters of the Motion Controller, e.g., for
drive control and status check.

See chap. 6.2, p. 25.

File Description

MotionFunctions.bi Pre-defined functions for typical drive tasks of the Motion Controllers.

See chap. 6.3, p. 25.

MyControlLib.bi Extension of MotionFunctions.bi for general purposes.

See chap. 6.4, p. 26.

DIM DeviceStatus
DeviceStatus = GETOBJ Statusword

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

FAULHABER Motion library

25

6.2 MotionMacros
The MotionMacros.bi file contains pre-defined access to parameters of the drive system.

The macros always start with code MC.

Example:

6.3 MotionFunctions
File MotionFunctions.bi contains a set of pre-defined functions that can be used to set up
your own processes.

FUNCTION Enable ()
The Enable function tries to bring the drive state machine into the Operation Enabled
state.

Only once the Operation Enabled state has been reached does the function return to the
calling context. If the state cannot be achieved, e.g., because a blocking error is pending,
the function does not return. This is, thus, a blocking call.

FUNCTION Disable ()
The Disable function first switches the drive to the Switched On state. This brings the drive
to a stop via the ramp set in object Disable Operation Option Code (0x605C). Afterwards, it
switches back to the initial state Switch On Disabled.

FUNCTION QuickStop ()
The QuickStop function switches the drive from the Operation Enabled state to the Quick
Stop Active state. This brings the drive to a stop via the ramp set in object Quick Stop
Option Code (0x605A).

FUNCTION MoveAbs (TargetPos, Immediate)
The MoveAbs function passes parameter TargetPos as new absolute set-point.

Prerequisite: Operating mode PP is set.

Parameter Immediate forces the drive to accept the new set-point even during running
positioning.

The function immediately returns to the calling context and does not wait until the passed
target position is reached.

FUNCTION MoveRel (TargetPos, Immediate)
The MoveRel function passes parameter TargetPos as new relative set-point. Thus, the new
movement takes place relative to the previous movement.

Prerequisite: Operating mode PP is set.

Parameter Immediate forces the drive to accept the new set-point even during running
positioning.

The function immediately returns to the calling context and does not wait until the passed
target position is reached.

#DEFINE MC.GetStatusword GETOBJ $6041.00
…

DIM DeviceStatus
DeviceStatus = MC.GetStatusword

The Motion Manager autocomplete shows a list of available macro functions after
entering "MC." (or Ctrl + Space bar after the period).

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

FAULHABER Motion library

26

FUNCTION WaitPos ()
The WaitPos function waits until the drive signals via the Target Reached bit in the status
word that a target has been reached.

Prerequisite: A new positioning operation was first started in operating mode PP with
MoveAbs or MoveRel.

6.4 MyControlLib.bi
FUNCTION IsInput(pin)
The IsInput function returns the logical state of a digital input selected via the pin param-
eter:

FUNCTION SetOutput(pin,level)
The function SetOutput sets the digital output specified via the parameter pin:

The parameter level controls the logical signal of the digital output:

FUNCTION StartHomingMethod(method)
The function StartHomingMethod sets the homing method specified via the parameter
method and starts it. Any necessary I/O configuration must be made first.

FUNCTION StartHoming()
The function StartHoming starts the preconfigured or last set homing method. Any neces-
sary I/O configuration must be made first.

FUNCTION isHomingFinished()
The isHomingFinished function checks in the drive status word whether a previously
started homing was completed successfully. The function can only be used for the "mov-
ing" homings, i.e., for all except method 37.

There is no verification of whether a homing was started.

FUNCTION isInPos()
The isInPos function checks in the drive status word whether a previously started position-
ing process was successfully completed.

There is no verification of whether a positioning process was started.

Digital input pin

DigIn1 pin = 1

DigIn2 pin = 2

... ...

DigIn8 pin = 8

Digital output pin

DigOut1 pin = 1

DigOut2 pin = 2

DigOut3 pin = 3

level Digital output LED

level = 0 low lights up

level = 1 high does not light up

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Example programs

27

7 Example programs
The example files are stored under Public Documents in the folder \Users\Public\Docu-
ments\Faulhaber\Motion Manager 7\Examples\MC Basic.

The files can be loaded via the file management extension menu in the Motion Manager
and saved in the drive's project folder for further processing.

7.1 Simple cyclic movement using the library functions
In this example, the Profile Position Mode (PP) is first set. Two positions are defined symbol-
ically. The motor control is started explicitly via the Enable() function.

With the library functions from MotionFunctions.bi, the position then alternates between
the two positions.

Prerequisite: The motor was successfully commissioned and the control was adapted to the
application.

'--

'Author: MCSupport

'Date: 2018-09-14

'--

'Description: Test of the Libs

'--

#INCLUDE "MotionParameters.bi"

#INCLUDE "MotionFunctions.bi"

#DEFINE PosA 0

#DEFINE PosB 10000

SETOBJ ModesOfOperation = OpModePP

Enable ()

DO
MoveAbs (PosA, 0)

WaitPos ()

DELAY 1000

MoveAbs (PosB, 0)

WaitPos ()

DELAY 100
LOOP

END

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Example programs

28

7.2 Use of sequences of steps for program design
In many cases, sequences consist of individual steps that are to be processed in sequence or
depending on other conditions.

Examples:

 First, start the control

 Next, execute a reference run

 Then, change to positioning operation

 If … is actuated, change to inching mode

The key words that identify the sequence of steps are in bold in the examples.

In all of these cases, it is useful to collect the steps in a table and organize them into a
sequence. It must be noted for each step what is to occur during the step and what the con-
dition is for advancing to the next step.

Implementation

7.2.1 Reference run with subsequent automatic change to positioning operation

In this example, the Motion Controller is configured so that the motor control is started
automatically.

A check is first performed in the sequence program to determine whether the output stage
is already activated. Afterwards, the previously configured reference run is started.

After the drive has been successfully referenced, it switches to active operation. DigIn1 can
be used to switch between motion control with analogue setpoint specification and torque
control.

DIM StepCounter

StepCounter = 1

…
DO

IF StepCounter = 1 THEN
DoSomething ()

IF FirstCondition THEN
StepCounter = 2

END IF
ELSEIF StepCounter = 2 THEN

DoWhatever ()

IF NextCondition THEN
StepCounter = 3

END IF
ELSEIF … THEN
…
END IF

LOOP

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Example programs

29

Prerequisites
 The motor was successfully commissioned and the control adapted to the application.

 The desired type of reference run was configured in object 0x6098.00.

 The analogue setpoint specifications are appropriately scaled via objects 0x2313 and
selected as sources for the position set value (0x2331.04) or the torque set value
(0x2331.02) via object 0x2331.

 The motor control was automatically activated via bit 2 in object 0x233F.00.

Sequence

Fig. 2: Sequence for reference run with subsequent change to positioning operation

Implementation

'--

'Author: MCSupport

'Date: 2018-09-14

'--

'Description: Test of the Libs

'--

#INCLUDE "MotionParameters.bi"

#INCLUDE "MotionFunctions.bi"

:Init

DIM StepCounter

DIM DigInStatus

StepCounter = 0

:MainLoop
DO

DigInStatus = GETOBJ DigitalInputLogicalState

IF StepCounter = 0 THEN
IF isEnabled() THEN

Torque
Control

Homing

Position
Control

isInRef

DigIn1 = 0 DigIn1 = 1

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Example programs

30

'Drive is enabled: start Homing

StartHoming()

StepCounter = 1
END IF

ELSEIF StepCounter = 1 THEN
IF isInRef() THEN

'can start the applicaton now1

StepCounter = 2
END IF

ELSE
Run()

END IF
LOOP

END

'--

'local functions

FUNCTION isEnabled()
DIM DriveStatus

'DriveStatus is the lower bits of the statusword

DriveStatus = (GETOBJ Statusword) & $6F

IF (DriveStatus = CiAStatus_OperationEnabled) THEN
RETURN 1

ELSE
RETURN 0

END IF
END FUNCTION

FUNCTION StartHoming()
SETOBJ ModesOfOperation = OpModeHoming

SETOBJ Controlword = (CiACmdEnableOperation | CiACmdStartBit)
END FUNCTION

FUNCTION isInRef()
DIM DeviceStatus

DeviceStatus = GETOBJ Statusword

'check for IsInRef bit

IF (DeviceStatus & $1000) > 0 THEN
RETURN 1

ELSE
RETURN 0

END IF
END FUNCTION

FUNCTION Run()
'check for DigIn1

IF (DigInStatus & $01) > 0 THEN
SETOBJ ModesOfOperation = OpModeAPC

ELSE
SETOBJ ModesOfOperation = OpModeATC

END IF
END FUNCTION

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Example programs

31

7.2.2 Reference run with subsequent automatic change to positioning operation
and start-stop function

This example builds on the example in chap. 7.2.1, p. 28.

Control is not activated automatically here. Control is activated from within the program if
DigIn2 is active.

After the first switch-on procedure, the reference run is performed first followed by a
change to normal operation. Control can also be deactivated again at any time via DigIn2.
The reference run does, however, only occur after being powered on for the first time.

Prerequisites
 The motor was successfully commissioned and the control adapted to the application.

 The desired type of reference run was configured in object 0x6098.00.

 The analogue setpoint specifications are appropriately scaled via objects 0x2313 and
selected as sources for the position set value (0x2331.04) or the torque set value
(0x2331.02) via object 0x2331.

Sequence

Fig. 3: Sequence for reference run with subsequent change to positioning operation and
start-stop function

Implementation
The sequence for reference run with subsequent change to positioning operation (left side
in Fig. 3) is taken over, including the sub-functions from the example in chap. 7.2.1, p. 28.

The check and reaction to DigIn2 is amended to the loop. Prerequisite for this is the imple-
mentation of the sequence as a sequence of steps without any blocking queries.

'--

'Author: MCSupport

'Date: 2018-09-14

'--

'Description: Test of the Libs

'--

Torque
Control

Homing

Position
Control

isInRef

DigIn1 = 0 DigIn1 = 1

Drive
Disabled

DigIn2 = 0

DigIn2 = 1

Drive
Enabled

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Example programs

32

#INCLUDE "MotionParameters.bi"

#INCLUDE "MotionFunctions.bi"

:Init

DIM StepCounter

DIM DigInStatus

DIM DriveStatus

DIM isStarted

StepCounter = 0

isStarted = 0

:MainLoop
DO

'cyclic check of status

'DriveStatus is the lower bits of the statusword

DriveStatus = (GETOBJ Statusword) & $6Fe

DigInStatus = GETOBJ DigitalInputLogicalState

'check application status

IF StepCounter = 0 THEN
IF isEnabled() THEN

'Drive is enabled: start Homing

StartHoming()

StepCounter = 1
END IF

ELSEIF StepCounter = 1 THEN
IF isInRef() THEN

'can start the applicaton now1

StepCounter = 2
END IF

ELSE
Run()

END IF

'check DigIn2 for start/stop oft he powerstage

IF isStarted THEN
'check for stop command

IF (DigInStatus & $02) = 0 THEN
'drive shall be stopped

IF StopDrive() THEN
isStarted = 0

END IF
END IF

ELSE
'check for start command

IF (DigInStatus & $02) > 0 THEN
'drive shall be started

IF StartDrive() THEN
isStarted = 1

END IF
END IF

END IF
LOOP

END

4th edition, 28.02.2024 7000.05056, 4th edition, 28.02.20247000.05056

Example programs

33

7.3 Event handling
The following program extract shows how the program can respond to the event Tempera-
ture warning limit reached.

'--

'local functions

FUNCTION isEnabled()
IF (DriveStatus = CiAStatus_OperationEnabled) THEN

RETURN 1
ELSE

RETURN 0
END IF

END FUNCTION

FUNCTION StartHoming()
SETOBJ ModesOfOperation = OpModeHoming

SETOBJ Controlword = (CiACmdEnableOperation | CiACmdStartBit)
END FUNCTION

FUNCTION isInRef()
DIM DeviceStatus

DeviceStatus = GETOBJ Statusword

'check for IsInRef bit

IF (DeviceStatus & $1000) > 0 THEN
RETURN 1

ELSE
RETURN 0

END IF
END FUNCTION

FUNCTION Run()
'check for DigIn1

IF (DigInStatus & $01) > 0 THEN
SETOBJ ModesOfOperation = OpModeAPC

ELSE
SETOBJ ModesOfOperation = OpModeATC

END IF
END FUNCTION

DEF_EVT_VAR e 'Define event mask

EN_EVT $00030000, EvtOverTemp 'activate event handling for over temperature

:EvtOverTemp

IF e & $00020000 THEN
END

ELSE
w = 1 ‘temperature warning, set variable w

END IF

RET_EVT

7000.05056, 4th edition, 28.02.2024
© Dr. Fritz Faulhaber GmbH & Co. KG

DR. FRITZ FAULHABER
GMBH & CO. KG
Antriebssysteme

Faulhaberstraße 1
71101 Schönaich • Germany
Tel. +49(0)7031/638-0
Fax +49(0)7031/638-100
info@faulhaber.de
www.faulhaber.com

https://www.faulhaber.com

	Programming Manual
	1 About this document
	1.1 Validity of this document
	1.2 Associated documents
	1.3 List of abbreviations
	1.4 Symbols and designations

	2 Introduction
	3 Characteristics of the programming language
	3.1 Command set
	3.2 Operators and special characters
	3.3 Variables
	3.3.1 Global variables with fixed address
	3.3.2 Allocated global and local variables

	3.4 Instructions for creating programs

	4 Developing sequence programs using the Motion Manager
	4.1 Edit program
	4.1.1 File management
	4.1.2 File editing

	4.2 Load the program to the controller and execute it
	4.3 Program Debug

	5 Control of sequence programs
	5.1 Control via the interface
	5.2 Error handling
	5.3 Start the sequence program automatically
	5.4 Protecting sequence programs
	5.5 Data exchange with sequence programs

	6 FAULHABER Motion library
	6.1 MotionParameters
	6.2 MotionMacros
	6.3 MotionFunctions
	6.4 MyControlLib.bi

	7 Example programs
	7.1 Simple cyclic movement using the library functions
	7.2 Use of sequences of steps for program design
	7.2.1 Reference run with subsequent automatic change to positioning operation
	7.2.2 Reference run with subsequent automatic change to positioning operation and start-stop function

	7.3 Event handling

