# **FAULHABER**

Motion Control

Series MCLM 300x CF

Communication/ Function Manual

ΕN

# CA O PAIN WITH FAULHABER CAN



# **Imprint**

Version: 2nd edition, 12.11.2013

Copyright by Dr. Fritz Faulhaber GmbH & Co. KG Daimlerstr. 23/25 · 71101 Schönaich

All rights reserved, including those to the translation. No part of this description may be duplicated, reproduced, stored in an information system or processed or transferred in any other form without prior express written permission of Dr. Fritz Faulhaber GmbH & Co. KG.

This technical manual has been prepared with care. Dr. Fritz Faulhaber GmbH & Co. KG cannot accept any liability for any errors in this technical manual or for the consequences of such errors. Equally, no liability can be accepted for direct or consequential damages resulting from improper use of the equipment.

The relevant regulations regarding safety engineering and interference suppression as well as the requirements specified in this technical manual are to be noted and followed when using the software.

Subject to change without notice.

The respective current version of this technical manual is available on FAULHABER's internet site: www.faulhaber.com



# Overview

#### **Overview of the FAULHABER Motion Control Drives documents**

| Document                                    | Contents                                                                                    |
|---------------------------------------------|---------------------------------------------------------------------------------------------|
| Technical Manual                            | Device installation, safety, specification                                                  |
| Communication and function manual (CANopen) | Initial start-up, function overview, protocol description and parameter description.        |
| Motion Manager instruction manual           | Operation of the "FAULHABER Motion Manager" PC software for configuration and commissioning |
| Product data sheets                         | Technical limit and operating data                                                          |

| Guide to the Document                                                                            |           |
|--------------------------------------------------------------------------------------------------|-----------|
| Notes on the initial start-up of a FAULHABER Motion Control system at the PC in th configuration | e default |
| Quick Start                                                                                      | Page 9    |
| Overview of the possible operating modes in Faulhaber mode                                       |           |
| Operation in FAULHABER mode                                                                      | Page 15   |
| Specification of the CANopen communication protocol                                              |           |
| CANopen protocol description                                                                     | Page 56   |
| Extended CAN functions                                                                           | Page 69   |
| Overview of the supported drive profiles according to CiA 402                                    |           |
| Functional description of the CANopen CiA 402                                                    | Page 71   |
| Detailed description of the parameters for the implemented<br>Function blocks within the drive   |           |
| Commissioning                                                                                    | Page 95   |
| Description of all the drive's parameters and commands, broken down into function                | nal areas |
| Parameter description                                                                            | Page 119  |



# **Table of Contents**

| 1 | Impo | rtant Information                                                                                              | 7        |
|---|------|----------------------------------------------------------------------------------------------------------------|----------|
|   | 1.1  | Symbols used in this manual                                                                                    | 7        |
|   | 1.2  | Additional information                                                                                         | 8        |
| 2 | 0    | la Chanala                                                                                                     | 0        |
| 2 | _    | k Start                                                                                                        | 9        |
|   | 2.1  | Set node number and baud rate                                                                                  | 9        |
|   | 2.2  | Operation using FAULHABER Motion Manager                                                                       | 10       |
|   |      | 2.2.1 Activate CANopen nodes                                                                                   | 10       |
|   |      | 2.2.2 Configuring the drives                                                                                   | 10       |
|   |      | 2.2.3 Operation using FAULHABER commands                                                                       | _11      |
|   | 2.2  | 2.2.4 Operation in one of the CANopen CiA 402 drive profiles                                                   | 11       |
|   | 2.3  | Operation using own host application                                                                           | 13       |
|   |      | 2.3.1 Activate CANopen nodes                                                                                   | 13       |
|   |      | 2.3.2 Configuring the drives                                                                                   | 13<br>13 |
|   |      | 2.3.3 Operation using FAULHABER commands                                                                       | 14       |
|   |      | 2.3.4 Operation in one of the CANopen CiA 402 drive profiles                                                   | 14       |
| 3 | Oper | ation in FAULHABER mode                                                                                        | 15       |
|   | 3.1  | Position control                                                                                               | 17       |
|   |      | 3.1.1 Set-point presetting via CAN/PDO2                                                                        | 17       |
|   |      | 3.1.2 Analog positioning mode (APCMOD)                                                                         | 20       |
|   |      | 3.1.3 External encoder as actual position value (ENCMOD)                                                       | 22       |
|   |      | 3.1.4 For high-precision applications, the actual values of LM motors can be derived from an external encoder. | 22       |
|   | 3.2  | Velocity control                                                                                               | 25       |
|   |      | 3.2.1 Target velocity via CAN/PDO2                                                                             | 26       |
|   |      | 3.2.2 Velocity presetting via an analog voltage or a PWM signal                                                | 28       |
|   |      | 3.2.3 External encoder as actual velocity value (ENCMOD)                                                       | 30       |
|   | 3.3  | Homing and limit switches                                                                                      | 33       |
|   |      | 3.3.1 Limit switch connections and switching level                                                             | 34       |
|   |      | 3.3.2 Motion control commands                                                                                  | 35       |
|   |      | 3.3.3 Configuration of homing and limit switches                                                               | 36       |
|   | 3.4  | Extended operating modes                                                                                       | 38       |
|   |      | 3.4.1 Stepper motor mode                                                                                       | 38       |
|   |      | 3.4.2 Gearing mode (electronic gear)                                                                           | 40       |
|   |      | 3.4.3 Voltage regulator mode                                                                                   | 42       |
|   |      | 3.4.4 Current control with analog current presetting                                                           | 43       |
|   | 3.5  | Special fault output functions                                                                                 | 45       |



# **Table of Contents**

|   | 3.6 Technical information                                                    | 47 |
|---|------------------------------------------------------------------------------|----|
|   | 3.6.1 Ramp generator                                                         | 47 |
|   | 3.6.2 Sinus commutation                                                      | 51 |
|   | 3.6.3 Current controller and I <sup>2</sup> t current limitation             | 51 |
|   | 3.6.4 Overtemperature protection                                             | 53 |
|   | 3.6.5 Under-voltage monitoring                                               | 53 |
|   | 3.6.6 Overvoltage regulation                                                 | 53 |
|   | 3.6.7 Setting the controller parameters for velocity and position controller | 53 |
| 4 | CANopen protocol description                                                 | 56 |
|   | 4.1 Introduction                                                             | 56 |
|   | 4.2 PDOs (process data objects)                                              | 58 |
|   | 4.3 SDO (service data object)                                                | 60 |
|   | 4.4 Emergency Object (error message)                                         | 62 |
|   | 4.5 SYNC object                                                              | 63 |
|   | 4.6 NMT (network management)                                                 | 64 |
|   | 4.7 Entries in the object dictionary                                         | 67 |
| 5 | Extended CAN functions                                                       | 69 |
|   | 5.1 The FAULHABER channel                                                    | 69 |
|   | 5.2 Trace                                                                    | 69 |
| 6 | Functional description of the CANopen CiA 402                                | 71 |
|   | 6.1 Device Control                                                           | 72 |
|   | 6.1.1 State machine of the drive                                             | 72 |
|   | 6.1.2 Selection of the operating mode                                        | 76 |
|   | 6.2 Factor Group                                                             | 77 |
|   | 6.3 Profile Position Mode and Position Control Function                      | 79 |
|   | 6.4 Homing Mode                                                              | 84 |
|   | 6.5 Profile Velocity Mode                                                    | 88 |
|   | 6.6 Drive parameters/Common entries                                          | 91 |
|   | 6.7 Inputs/Outputs                                                           | 92 |
|   | 6.8 Error handling                                                           | 94 |



# **Table of Contents**

| 7 | Commissioning                                             | 95  |
|---|-----------------------------------------------------------|-----|
|   | 7.1 Node number and baud rate                             | 95  |
|   | 7.2 Basic settings                                        | 97  |
|   | 7.3 Configuration using the Motion Manager                | 98  |
|   | 7.3.1 Connection setting                                  | 99  |
|   | 7.3.2 Motor selection                                     | 100 |
|   | 7.3.3 Drive configuration                                 | 100 |
|   | 7.3.4 Selection of the operating mode                     | 101 |
|   | 7.4 Configuration in FAULHABER mode                       | 102 |
|   | 7.4.1 Basic settings                                      | 102 |
|   | 7.4.2 Drive parameters                                    | 105 |
|   | 7.4.3 Controller settings                                 | 106 |
|   | 7.4.4 I/O connection and use                              | 108 |
|   | 7.5 Configuration in a drive profile according to CIA 402 | 110 |
|   | 7.5.1 Basic settings                                      | 110 |
|   | 7.5.2 Drive parameters                                    | 112 |
|   | 7.5.3 Controller setting                                  | 113 |
|   | 7.5.4 I/O connection and use                              | 115 |
|   | 7.6 Data set management                                   | 117 |
|   | 7.7 Diagnosis                                             | 118 |
|   | 7.7.1 Status display                                      | 118 |
|   | 7.7.2 Trace function                                      | 118 |
| 8 | - assured a conspicuous                                   | 119 |
|   | 8.1 Communication objects according to CiA 301            | 119 |
|   | 8.2 Manufacturer-specific objects                         | 125 |
|   | 8.3 Drive profile objects according to CiA 402            | 127 |
|   | 8.4 FAULHABER commands                                    | 133 |
|   | 8.4.1 Basic setting commands                              |     |
|   | 8.4.2 Query commands for basic settings                   | 138 |
|   | 8.4.3 Miscellaneous commands                              |     |
|   | 8.4.4 Motion control commands                             | 141 |
|   | 8.4.5 General query commands                              |     |
|   | 8.4.6 Command overview                                    | 143 |
|   |                                                           |     |



# **1 Important Information**

#### 1.1 Symbols used in this manual

#### **WARNING!**

#### Warning!



This pictogram with the wording "Warning!" indicates an imminent danger which can result in physical injuries.

▶ This arrow points out the appropriate action to take to prevent the imminent danger.

#### **CAUTION!**

#### Caution!



This pictogram with the wording "Caution!" indicates an imminent danger which can result in slight physical injuries or material damage.

► This arrow points out the appropriate precautions.

#### **REGULATION!**

#### Regulations, guidelines and directives



This pictogram with the wording "Regulation" indicates a statutory regulation, guideline or directive which must be observed in the respective context of the text.

#### NOTE

#### Note



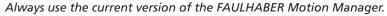
This "Note" pictogram provides tips and recommendations for use and handling of the component.



# **1 Important Information**

#### 1.2 Additional information

#### **WARNING!**


#### Risk of injuries



Failure to comply with the safety instructions during installation and operation can result in irreparable damage to the device and a risk of injuries to the operating personnel.

- ▶ Please read through the whole of your drive's technical manual before installing the drive.
- ▶ Keep this communication and function manual in a safe place for subsequent use.

#### NOTE





The respective current version is available to download from <a href="https://www.faulhaber.com/Motion Manager">www.faulhaber.com/Motion Manager</a>.

#### NOTE



The information given in this instruction manual refers to the standard version of the drives. Please refer to any additional information sheet provided in the event of differences in information due to a customer-specific motor modification.

#### NOTE



Motion Controllers with a CANopen interface are designed as slaves in a CANopen environment and always require a connection with a CANopen Master to operate.



To facilitate introduction, this chapter highlights the initial steps for commissioning and operation of FAULHABER Motion Controllers with CANopen interface. However, the detailed documentation must always be read and taken into account, particularly <a href="Chapter 7.2">Chapter 7.2</a> "Basic settings"!

#### 2.1 Set node number and baud rate

The standard units are delivered without valid node address (Node ID = 0xFF) and with automatic baud rate detection set.

In order to set the baud rate and node address, the unit must first be connected via CAN to an appropriate configuration tool, which supports the LSS protocol according to CiA DSP305.

#### **NOTE**



FAULHABER Motion Manager installed on a PC with supported CAN interface can also be used for this. The LSS compatible configuration tool can be used to set the node address and baud rate, either in Global mode, if only one drive is connected, or in Selective mode via the serial number, if a drive is to be configured in the network (see Chapter 7.1 "Node number and baud rate").

If the FAULHABER Motion Manager is to be used as the configuration tool, proceed as follows:

The following steps are necessary for commissioning using the default configuration:

- 1. Connect the drive unit to a voltage source (24V). For details of connection cable assignment and the operating voltage range of the drive, see Chapter 3 "Installation" in the technical manual.
- Connect drive unit to the CAN interface of the PC and switch on or connect PC to the CAN network.
- 3. Start FAULHABER Motion Manager.
- 4. Activate CAN interface as communication interface and configure using the menu item "Terminal Connections..." or the Connection Wizard.
- 5. Select menu item "CAN LSS (DSP305)...".
- 6. Select Configuration mode:
  - a. Globally configure individual drive (LSS Switch Mode Global) if only one LSS node is connected and you do not want to enter any further data.
  - b. Selectively configure specified nodes (LSS Switch Mode Selective) if a node is to be configured in the network. If the node has not yet been found in the Node Explorer, enter the serial number of the drive node to be configured here, otherwise the data fields are already correctly preset.
- 7. In the next dialog, select the required transfer rate or "Auto" and enter the required node number.
- 8. Press "Send" button.
- 9. The settings are transferred and are permanently stored in the controller. The Motion Manager then calls up the Scan function again and the node should now be displayed with the correct node number in the Node Explorer. After switching off and on again, the drive will operate with the set configuration.



#### 2.2 Operation using FAULHABER Motion Manager

The FAULHABER Motion Manager provides easy access to the CANopen state machine using menu entries, which can be opened either with the Node Explorer's context menu (right-click) or with the "CAN" menu. The required node must have been activated beforehand by double clicking in the Node Explorer. The current statuses are always displayed in the status line at the bottom edge of the Motion Manager window.

Further information on the state machine of a CANopen node is given in <u>Chapter 4 "CANopen protocol description"</u>.

#### NOTE



The FAULHABER commands described below can be entered directly in the command input line or selected from the Commands menu. After sending the command, a command interpreter is activated which converts the command into a corresponding CAN message frame on PDO2.

#### 2.2.1 Activate CANopen nodes

In order to drive a motor using the Motion Manager, follow the procedure below (assuming a valid node number and matching baud rate are set):

#### 1. Start network nodes.

Select the "CANopen Network Management (NMT) – Start Remote Node" entry in the Node Explorer's context menu or in the "CAN" menu.

The state of the node is then "Operational", FAULHABER commands are now available!

#### 2. Configure drive functions:

A user-friendly dialog that enables the desired settings to be made is available under the menu item "Configuration – Drive functions...".

#### 2.2.2 Configuring the drives

#### **CAUTION!**

#### Check basic settings



Incorrect values in the Motion Controller's settings can result in damage to the controller and/or drive

Motion controllers with an externally connected motor must be equipped with current limitation values suitable for the motor and suitable controller parameters before being started up. The Motor Wizard in Motion Manager is available for selection of the motor and suitable basic parameters.

Other settings, e.g. for the function of the fault output, can be made under the "Configuration – Drive functions" menu item, where a convenient dialog is provided (see <a href="Chapter 7.3" (Configuration using the Motion Manager")</a>. The configuration dialog is also available for direct access in the Wizard bar of the Motion Manager window (Configuration Wizard).

Switch to the required mode (Modes of Operation/OPMOD 1, 3, 6 or –1), depending on whether you want to operate the drive using the standard CANopen objects or the FAULHABER commands.



#### 2.2 Operation using FAULHABER Motion Manager

#### 2.2.3 Operation using FAULHABER commands

#### 3. Activate drive:

"EN" command.

Input in command input field and press "Send" button or select the "Enable Drive (EN)" button or the relevant entry from the "Commands – Motion Control" menu.


#### 4. Operate drive (examples):

■ Move the motor by 10 000 increments with a relative positive positioning speed of 100 mm/s: "SP100" command to set the positioning speed, "LR10000" command to load the relative target position, "M" command to move to loaded target position.

#### 2.2.4 Operation in one of the CANopen CiA 402 drive profiles

#### 3. Activate drive using the CiA 402 state machine:

A CiA 402 drive must be activated according to a fixed sequence of steps. The necessary commands are directly available in the context menu of the drive node:



#### ■ Shutdown

Select "Device Control (DSP402) – Shutdown" entry using the context menu in Node Explorer or using the "CAN" menu.

#### ■ Switch On

Select the "Device Control (DSP402) – Switch On" entry using the context menu in Node Explorer or using the "CAN" menu.

#### ■ Enable Operation

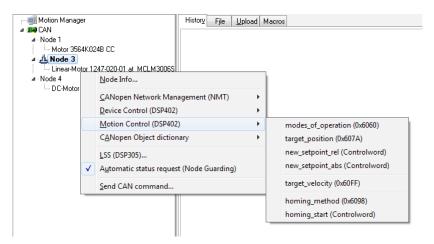
Select the "Device Control (DSP402) - Enable Operation" entry using the context menu in Node Explorer or using the "CAN" menu.

#### **HINWEIS**



Alternatively, you can also simply press the green "Switch on output stage" button or F5, in order to carry out these steps all at once.




#### 2.2 Operation using FAULHABER Motion Manager

#### 4. Drive motor (example):

Move motor relatively by 1 000 increments:

Set profile position mode:

- Select the "Motion Control (DSP402) modes\_of\_operation (6060h)" entry in the node explorer's context menu or in the "CAN" menu.
- Enter value 1 for the "Profile Position Mode" in the dialogue box → the necessary command is entered directly in the command field of the Motion Manager.
- Press "Send" button next to the command field.



Set Target Position to value 1 000 (Object 0x607A):

- Select the "Motion Control (DS402) target\_position (607Ah)" entry in the Node Explorer's context menu or in the "CAN" menu.
- Enter value 1 000 for the target position in the dialogue box  $\rightarrow$  the necessary command is entered directly in the command field of the Motion Manager.
- Press "Send" button next to the command field.

Move to target position: Set "New set-point" and "rel" in controlword.

■ Select the "Motion Control (DS402) - new\_setpoint\_rel (PDO1)" entry in the Node Explorer's context menu or in the "CAN" menu.

#### 2.3 Operation using own host application

#### 2.3.1 Activate CANopen nodes

The broadcast command "Start Remote Node" with CAN ID 0 is used to start either an individual node or the whole network and to set it to "Operational" status:



The first data byte contains the start command "Start Remote Node", the second data byte contains the node address or 0 for the whole network.

All functions can be proceeded after the node has been started. The drive can now be activated and operated using the Device Control functions according to CiA DSP402 or using the FAULHABER commands on PDO2.

The identifiers of the individual objects are allocated according to the Predefined Connection Set and depend on the node number (see <a href="Chapter 4.6">Chapter 4.6 "NMT (network management)"</a>). Here are the most important objects:

| Command | CAN ID          | Description                             |
|---------|-----------------|-----------------------------------------|
| TxPDO1  | 0x180 + Node ID | Receive the drive's statusword          |
| RxPDO1  | 0x200 + Node ID | Transfer controlword to the drives      |
| TxPDO2  | 0x280 + Node ID | Receive FAULHABER data from the drive   |
| RxPDO2  | 0x300 + Node ID | Transfer FAULHABER command to the drive |
| TxSDO1  | 0x580 + Node ID | Read entry of the object dictionary     |
| RxSDO1  | 0x600 + Node ID | Write entry of the object dictionary    |

In delivery status, after they are switched on, the drives are in operating mode Modes of operation = 1 (Profile Position Mode). In this operating mode the drive is controlled using the Device Control state machine, which is operating using the controlword (Object 0x6040 or RxPDO1) and is queried using the statusword (Object 0x6041 or TxPDO1).

#### 2.3.2 Configuring the drives

The drive can be configured both by means of SDO transfer using the objects of the object dictionary, and using PDO2 with the commands of the FAULHABER channel.

#### NOTE



Not all the configuration options are accessible using the object dictionary. Advanced operating modes are only available via the FAULHABER channel (see <u>Chapter 8 "Parameter description"</u>). Use of the FAULHABER Motion Manager is recommended for the basic settings (see <u>Chapter 7.2 "Basic settings"</u>).

#### 2.3.3 Operation using FAULHABER commands

All features of the drive can be operated even without in-depth CANopen knowledge, such as Device Control, SDO protocol and object dictionary. The FAULHABER channel on PDO2 provides an easy means of executing all supported commands.

#### **RxPDO2: FAULHABER command**

| 11 bit identifier         | 5 bytes user | data |     |     |     |
|---------------------------|--------------|------|-----|-----|-----|
| 0x300 (768d) +<br>Node ID | Command      | LLB  | LHB | HLB | ННВ |

It is necessary to switch to operating mode Modes of operation = -1 first for drive control using the FAULHABER channel:



#### 2.3 Operation using own host application

#### **Example:**

■ Start node 3 using the CANopen Network Management (NMT):

ID 000: 01 03 (Start Remote Node 3)

■ Switch to FAULHABER mode using RxPDO2:

ID 303: FD FF FF FF FF (OPMOD-1)

■ Switch On using FAULHABER command on RxPDO2:

ID 303: OF 00 00 00 00 (EN)

■ Use the FAULHABER command to move the drive relatively by 1 000 increments to RxPDO2:

```
ID 303: B6 E8 03 00 00 (LR1000)
ID 303: 3C 00 00 00 00 (M)
```

#### **NOTE**

All available commands are listed in Chapter 8.4 "FAULHABER commands".



#### 2.3.4 Operation in one of the CANopen CiA 402 drive profiles

A CiA 402 drive must be activated according to a fixed sequence of steps (see <u>Chapter 6.1 "Device Control"</u>). Write access to the controlword is possible using the object dictionary at address 0x6040 or using the RxPDO1:

#### 1. Shutdown:

Controlword = 0x0006

#### 2. Switch on:

Controlword = 0x0007

The drive is then in "Switched On" status. Operation must then be released to enable drive commands to be executed.

#### 3. Enable Operation:

Controlword = 0x00 OF

The drive is then in "Operation Enabled" state, in which it can be operated using the relevant objects of the set operating mode (see <u>Chapter 6.1 "Device Control"</u> and <u>Chapter 6.2 "Factor Group"</u>).

#### 4. Drive motor (examples):

#### Move motor relatively by 1 000 increments:

Modes of Operation (Object 0x6060): Set 1 (Profile Position Mode) by means of SDO access.

Target Position (Object 0x607A): 10 000

Controlword = 0x00 7F (New set-point, Change set immediately, rel)



| Guide                          |         |
|--------------------------------|---------|
| Guide                          |         |
| Position control               | Page 17 |
| Velocity control               | Page 25 |
| Homing and limit switches      | Page 33 |
| Extended operating modes       | Page 38 |
| Special fault output functions | Page 45 |
| Technical information          | Page 47 |
|                                |         |

The Motion Controllers can be configured for different operating modes. As a default, the drive unit is delivered as a servo motor in "Profile Position Mode" according to CiA DSP402.

It is necessary to set Modes of operation or OPMODE to -1 for operation control using the FAUL-HABER channel.

The drive can be reconfigured by means of the corresponding FAULHABER commands. If the settings are to be permanently stored, the SAVE command must be executed following configuration; this saves the current settings in the Flash data memory, from where they are reloaded when the unit is next switched on. Alternatively, the EEPSAV command can also be run. Both commands are identical, therefore SAVE only is used in the following.

#### NOTE



Operation of the drive in one of the operating modes listed here requires that the device is in NMT "Operational" state and that power stage is activated ("Switched On" or "EN" command). All commands and objects listed below are summarised and explained again in <a href="Chapter 8.4" FAULHABER">Chapter 8.4 "FAULHABER</a> commands". The FAULHABER commands transmitted as CAN message frames on PDO2 are given for each operating mode.

The FAULHABER Motion Manager enables simple setting of the configuration parameters and operating modes via corresponding dialogue windows. The specified commands can be entered in plain text or selected from the Commands menu. CANopen state machines can be conveniently operated by means of menu selection. The current states are automatically displayed in the status line.

The command tables given in this chapter contain the syntax for direct entry in the Motion Manager. The complete command telegrams are described in <a href="Chapter 8" Parameter description"</a>.

#### NOTE

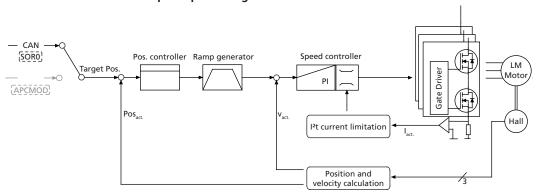


Please note that FAULHABER commands can only be received in "Operational" state (Motion Manager "CAN" menu – "Network Management (NMT)" – "Start Remote Node").



# Overview of the operating modes in FAULHABER mode and the FAULHABER commands for changing the operating mode

| Command   | Argument | Function                          | Description                                                                                                                                                                                                                                              |
|-----------|----------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOR       | 0 – 4    | Source for Velocity               | Source for velocity presetting 0: CAN interface (default) 1: Voltage at analog input 2: PWM signal at analog input 3: Current target value via analog input 4: Current target value via analog input with presetting of the direction via input polarity |
| CONTMOD   | -        | Continuous Mode                   | Switch back to normal mode from an enhanced mode                                                                                                                                                                                                         |
| STEPMOD   | -        | Stepper Motor Mode                | Change to stepper motor mode                                                                                                                                                                                                                             |
| APCMOD    | -        | Analog Position Con-<br>trol Mode | Change to position control via analog voltage                                                                                                                                                                                                            |
| ENCMOD    | -        | Encoder Mode                      | Change to encoder mode An external encoder serves as position detector (the current position value is set to 0)                                                                                                                                          |
| HALLSPEED | -        | Hall sensor as speed sensor       | Speed via Hall sensors in encoder mode                                                                                                                                                                                                                   |
| ENCSPEED  | -        | Encoder as speed sensor           | Speed via encoder signals in encoder mode                                                                                                                                                                                                                |
| GEARMOD   | -        | Gearing Mode                      | Change to gearing mode                                                                                                                                                                                                                                   |
| VOLTMOD   | -        | Set Voltage Mode                  | Activate Voltage Regulator Mode                                                                                                                                                                                                                          |
|           |          |                                   |                                                                                                                                                                                                                                                          |




#### 3.1 Position control

| Guide                                                           |         |
|-----------------------------------------------------------------|---------|
| Positioning mode with set value presetting via CAN              |         |
| Set-point presetting via CAN/PDO2                               | Page 17 |
| Positioning mode with set value presetting via the analog input |         |
| Analog positioning mode (APCMOD)                                | Page 20 |
| Positioning mode with external encoder as actual value          |         |
| External encoder as actual position value (ENCMOD)              | Page 22 |
|                                                                 |         |

#### 3.1.1 Set-point presetting via CAN/PDO2

#### Controller structure for set-point presetting via CAN/PDO2



In this operating mode, target positions can be preset using the FAULHABER commands via PDO2:

#### **Basic settings**

CONTMOD and SOR0 operating mode.

The positioning range limits can be set via the command LL and activated via APL.

The proportional amplification PP and a differential term PD can be set for the position controller.



#### 3.1 Position control

| Command | Argument | Function                               | Description                                                                                                                                                                                        |
|---------|----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PP      | Value    | Load Position Propor-                  | Load position controller amplification.                                                                                                                                                            |
|         |          | tional Term                            | Value: 1 255                                                                                                                                                                                       |
| PD      | Value    | Load Position Differen-                | Load position controller D-term.                                                                                                                                                                   |
|         |          | tial Term                              | Value: 1 255                                                                                                                                                                                       |
| LL      | Value    | Load Position Range<br>Limits          | Load limit positions (the drive cannot be moved out of<br>these limits). Positive values specify the upper limit and<br>negative values the lower.<br>The range limits are only active if APL1 is. |
|         |          |                                        | Value: -1.8 · 10 <sup>9</sup> +1.8 · 10 <sup>9</sup>                                                                                                                                               |
| APL     | 0-1      | Activate/Deactivate<br>Position Limits | Activate range limits (LL) (valid for all operating modes except VOLTMOD).  1: Position limits activated 0: Position limits deactivated                                                            |

#### **Additional settings**

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <a href="Chapter 3.6.1">Chapter 3.6.1</a> "Ramp generator").

#### Velocity controller/current limitation

The controller parameters POR and I of the velocity controller can be adjusted. In addition, the current limitation values LPC and LCC can be used to protect the drive against overload (see <a href="Chapter 3.2">Chapter 3.2</a> "Velocity control").

#### **Motion control commands**

The positioning is executed via the FAULHABER Motion Control commands. An overview of all Motion Control commands is given in <a href="Chapter 8" Parameter description">Chapter 8 "Parameter description"</a>.

| Command | Argument | Function               | Description                                                                                                                                                              |
|---------|----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN      | -        | Enable Drive           | Activate drive                                                                                                                                                           |
| DI      | -        | Disable Drive          | Deactivate drive                                                                                                                                                         |
| LA      | Value    | Load Absolute Position | Load new absolute target position                                                                                                                                        |
|         |          |                        | Value: -1.8 · 109 1.8 · 109                                                                                                                                              |
| LR      | Value    | Load Relative Position | Load new relative target position, in relation to last<br>started target position.<br>The resulting absolute target position must lie between<br>the values given below. |
|         |          |                        | Value: -2.14 · 109 and 2.14 · 109                                                                                                                                        |
| M       | -        | Initiate Motion        | Activate position control and start positioning                                                                                                                          |
| НО      | -/value  | Define Home Position   | Without argument: Set actual position to 0. With argument: Set actual position to specified value.                                                                       |
|         |          |                        | Value: -1.8 · 10 <sup>9</sup> +1.8 · 10 <sup>9</sup>                                                                                                                     |

#### **Example:**

- Load target position: LA40000
- Start positioning: M

Attainment of the target position is signalled by bit 10 "Target reached" in the statusword of the drive. If the transmission type for the TxPDO1 is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.

#### **Position resolution**

The TM parameter represents the magnetic pitch  $(\tau_m)$  of the linear motor. If the linear Hall sensors of the motors are used as position transducers, 3 000 pulses per magnetic pitch  $(\tau_m)$  are supplied.



#### 3.1 Position control

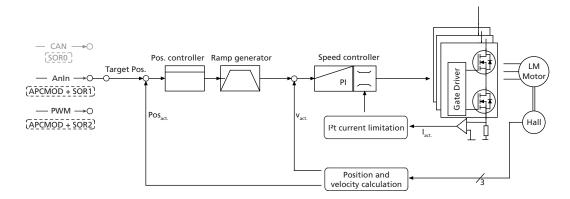
#### **Complex motion profiles**

More complex motion profiles can be generated through appropriate presetting of new values (maximum speed, acceleration, end position) during positioning. After a value change, simply execute a new motion start command (M).

Further information on compiling motion profiles is given in Chapter 3.6.1 "Ramp generator".

#### Digital signal target position

The entry into the target corridor can be displayed via the fault output as a digital output signal in the POSOUT function. The signal is not reset until a further Motion start command (M).


For notes on configuration, see Chapter 3.5 "Special fault output functions".



#### 3.1 Position control

#### 3.1.2 Analog positioning mode (APCMOD)

Controller structure for set-point presetting via an analog voltage



In this operating mode the target position can be preset using an analog voltage at the AnIn input.

#### **Basic settings**

APCMOD mode and SOR1 or SOR2.

The positioning range limits can be set via the command LL and activated via APL.

The proportional amplification PP and a differential term PD can be set for the position controller.

The maximum position to be approached with a voltage of 10 V can be preselected with the LL command. At -10 V the drive moves in the opposite direction up to the set negative range limit.

Irrespective of the preset LL value, the maximum position is limited to 3 000 000 in APCMOD.

Comment: The resolution of the analog input is limited to 12 bit (4 096 steps).

The direction can be predefined with the commands ADL and ADR.

| Command | Argument | Function                      | Description                                                                                                                                                                                                                               |
|---------|----------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PP      | Value    | Load Position Propor-         | Load position controller amplification.                                                                                                                                                                                                   |
|         |          | tional Term                   | Value: 1 255                                                                                                                                                                                                                              |
| PD      | Value    | Load Position Differen-       | Load position controller D-term.                                                                                                                                                                                                          |
|         |          | tial Term                     | Value: 1 255                                                                                                                                                                                                                              |
| LL      | Value    | Load Position Range<br>Limits | Load limit positions (the drive cannot be moved out of these limits). Positive values specify the upper limit and negative values the lower.  The range limits are only active if APL1 is set.  Value: -3 000 000 3 000 000 in the APCMOD |
| ADL     | -        | Analog Direction Left         | If the set-point is positive the drive rotates to the left (anti-clockwise).                                                                                                                                                              |
| ADR     | -        | Analog Direction Right        | If the set-point is positive the drive rotates to the right (clockwise).                                                                                                                                                                  |



#### 3.1 Position control

#### **Additional settings**

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <u>Chapter 3.6.1 "Ramp generator"</u>).

#### Velocity controller/current limitation

The controller parameters POR and I of the velocity controller can be adjusted. In addition, the current limitation values LPC and LCC can be used to protect the drive against overload (see <a href="Chapter 3.2">Chapter 3.2</a> "Velocity control").

#### Positioning via pulse width signal (PWM) at the analog input (SOR2)

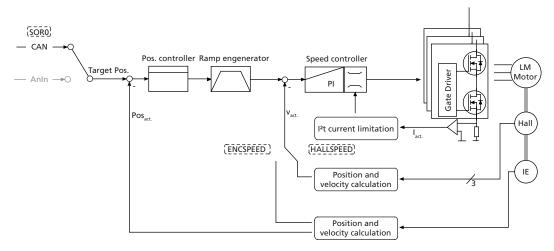
If SOR2 is set in APCMOD, the pulse duty factor of a PWM signal can be used as position set-point. On delivery:

- Pulse duty factor > 50% → positive target position
- Pulse duty factor = 50% → target position = 0
- Pulse duty factor < 50% → negative target position

#### Absolute positioning within a magnetic pole pitch:

In motion control systems, after switching on, the initial position is absolutely initialised within a pole pitch (–1 500 ... 1 500 corresponds to the spacing of the magnetic poles). This means that even if the power supply is disconnected, the position determination supplies the correct position value after restarting (if the cage bar has only been moved within one magnetic pole pitch).

The following commands enable the drive to be accurately positioned in the voltage range 0 V ... 10 V within one magnetic pole pitch and to return to the correct position even after the supply has been switched off, without homing (not MCDC).


- Switch over to analog positioning: APCMOD
- Hide negative range: LL-1
- Limit 0 V ... 10 V at AnIn to one magnetic pole pitch: LL3000



#### 3.1 Position control

#### 3.1.3 External encoder as actual position value (ENCMOD)

Controller structure for using an external encoder as the actual value encoder



# 3.1.4 For high-precision applications, the actual values of LM motors can be derived from an external encoder.

- Depending on the application, the velocity can be derived from the encoder or from the Hall sensors
- The external encoder can be mounted directly on the motor shaft, but an encoder that is mounted to the application output (e.g. glass scale) is particularly advantageous. This allows the high precision to be set directly at the output.
- Commutation still occurs via the analog Hall sensors.

#### **Basic settings**

ENCMOD and SOR0 operating mode.

The positioning range limits can be set via the command LL and activated via APL.

The proportional amplification PP and a differential term PD can be set for the position controller.

| Command | Argument | Function                               | Description                                                                                                                                                                                        |
|---------|----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PP      | Value    | Load Position Propor-                  | Load position controller amplification.                                                                                                                                                            |
|         |          | tional Term                            | Value: 1 255                                                                                                                                                                                       |
| PD      | Value    |                                        | Load position controller D-term.                                                                                                                                                                   |
|         |          | tial Term                              | Value: 1 255                                                                                                                                                                                       |
| LL      | Value    | Load Position Range<br>Limits          | Load limit positions (the drive cannot be moved out of<br>these limits). Positive values specify the upper limit and<br>negative values the lower.<br>The range limits are only active if APL1 is. |
|         |          |                                        | Value: -1.8 · 10 <sup>9</sup> +1.8 · 10 <sup>9</sup>                                                                                                                                               |
| APL     | 0 - 1    | Activate/Deactivate<br>Position Limits | Activate range limits (LL) (valid for all operating modes except VOLTMOD).  1: Position limits activated  0: Position limits deactivated                                                           |



#### 3.1 Position control

#### Settings for external encoder

| Command   | Argument | Function                       | Description                                                                                                        |
|-----------|----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|
| ENCMOD    | - "      | Encoder Mode                   | Change to encoder mode An external encoder serves as position transducer (the current position value is set to 0). |
| ENCSPEED  | -        | Encoder as speed sensor        | Speed via encoder signals in encoder mode                                                                          |
| HALLSPEED | -        | Hall sensor as speed<br>sensor | Speed via hall sensors in encoder mode                                                                             |
| ENCRES    | Value    | Load Encoder Resolu-<br>tion   | Load resolution of external encoder (4 times lines/mm).  Value: 8 to 65 535                                        |

#### **Additional settings**

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <u>Chapter 3.6.1 "Ramp generator"</u>).

#### Velocity controller/current limitation

The controller parameters POR and I of the velocity controller can be adjusted. In addition, the current limitation values LPC and LCC can be used to protect the drive against overload (see <a href="Chapter 3.2">Chapter 3.2</a> "Velocity control" and <a href="Chapter 3.6.3">Chapter 3.6.3</a> "Current controller and I<sup>2</sup>t current limitation").

#### **Motion control commands**

Positioning in the ENCMOD is executed in precisely the same way as in CONTMOD, using the FAULHABER Motion Control commands. An overview of all Motion Control commands is given in Chapter 8 "Parameter description".

| Command | Argument | Function               | Description                                                                                                                                                      |
|---------|----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN      | -        | Enable Drive           | Activate drive                                                                                                                                                   |
| DI      | -        | Disable Drive          | Deactivate drive                                                                                                                                                 |
| LA      | Value    | Load Absolute Position | Load new absolute target position                                                                                                                                |
|         |          |                        | Value: -1.8 · 10 <sup>9</sup> 1.8 · 10 <sup>9</sup>                                                                                                              |
| LR      | Value    | Load Relative Position | Load new relative target position, in relation to last started target position.  The resulting absolute target position must lie between the values given below. |
|         |          |                        | Value: -2.14 · 109 and 2.14 · 109                                                                                                                                |
| M       | -        | Initiate Motion        | Activate position control and start positioning                                                                                                                  |
| НО      | -/value  | Define Home Position   | Without argument: Set actual position to 0. With argument: Set actual position to specified value.                                                               |
|         |          |                        | Value: -1.8 · 10 <sup>9</sup> +1.8 · 10 <sup>9</sup>                                                                                                             |



#### 3.1 Position control

#### **Example:**

- Load target position: LA1000
- Start positioning: M

Attainment of the target position is signalled by bit 10 "Target reached" in the statusword of the drive. If the transmission type for the TxPDO1 is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.

#### **Position resolution**

In ENCMOD the resolution of the position values depends on the resolution of the encoder.

#### **Complex motion profiles**

More complex motion profiles can be generated through appropriate presetting of new values (maximum speed, acceleration, end position) during positioning. After a value change, simply execute a new motion start command (M).

Further information on compiling motion profiles is given in Chapter 3.6.1 "Ramp generator".

#### Digital signal target position

The entry into the target corridor can be displayed via the fault output as a digital output signal in the POSOUT function. The signal is not reset until a further Motion start command (M).

For notes on configuration, see Chapter 3.5 "Special fault output functions".

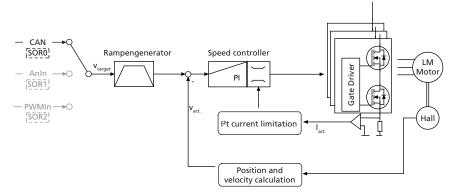


#### 3.2 Velocity control

| Guide                                                                |         |
|----------------------------------------------------------------------|---------|
| Velocity control mode with set value presetting via CAN              |         |
| Target velocity via CAN/PDO2                                         | Page 26 |
| Velocity control mode with set value presetting via the analog input |         |
| Velocity presetting via an analog voltage or a PWM signal            | Page 28 |
| Velocity control mode with external encoder as actual value          |         |
| External encoder as actual velocity value (ENCMOD)                   | Page 30 |
|                                                                      |         |

In velocity control mode the velocity of the drive is controlled by a PI controller. Provided the drive is not overloaded, the drive follows the presetting without deviation.

The current velocity of LM motors can be detected both from the Hall signals and via an additional encoder.


The velocity can be preset via the CAN interface (PDO2), via an analog voltage preset or via a PWM signal.



#### 3.2 Velocity control

#### 3.2.1 Target velocity via CAN/PDO2

#### Controller structure for velocity control



In this operating mode, the drive velocity can be controlled with set-point presetting via FAULHABER commands on PDO2. The velocity of BL motors is registered by the analog hall sensors, incremental encoders are only supported for DC motors.

#### **Basic settings**

CONTMOD and SOR0 operating mode.

The controller parameters POR and I and the sampling rate can be adjusted for the velocity controller.

| Command | Argument | Function                    | Description                                                                             |
|---------|----------|-----------------------------|-----------------------------------------------------------------------------------------|
| POR     | Value    | Load Velocity Proportional  | Load velocity controller amplification.                                                 |
|         |          | Term                        | Value: 1 255                                                                            |
| 1       | Value    | Load Velocity Integral Term | Load velocity controller integral term.                                                 |
|         |          |                             | Value: 1 255                                                                            |
| SR      | Value    | Load Sampling Rate          | Load sampling rate of the velocity controller as a multiple of the basic sampling time. |
|         |          |                             | Value: 1 20                                                                             |

#### **Velocity input**

In LM motors the current velocity is determined in CONTMOD by evaluating the Hall sensor signals, which supply 3 000 pulses per magnetic pitch.



#### 3.2 Velocity control

#### **Additional settings**

#### **Movement limits**

The LL command can also be used to define a movement range limit for velocity mode. The APL1 command activates monitoring of these limits.

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <u>Chapter 3.6.1 "Ramp generator"</u>).

#### **Current limitation**

The current limitation values LPC and LCC can be used to protect the drive against overload (see Chapter 3.6.3 "Current controller and I2t current limitation").

#### **Motion control commands**

An overview of all Motion Control commands is given in <a href="Chapter 8" Parameter description"">Chapter 8 "Parameter description"</a>.

| Command | Argument | Function             | Description                                                                                                            |
|---------|----------|----------------------|------------------------------------------------------------------------------------------------------------------------|
| EN      | -        | Enable Drive         | Activate drive                                                                                                         |
| DI      | -        | Disable Drive        | Deactivate drive                                                                                                       |
| V       | Value    | Select Velocity Mode | Activate velocity mode and set specified value as target velocity (velocity control). Unit: mm/s Value: -10 000 10 000 |

#### **Example:**

- Drive motor at 100 mm/s: v100 In order to change the direction, simply assign a negative velocity value (e.g. v-100).
- Stop motor: v0

#### NOTE

Also check that the maximum speed SP is not set below the desired target velocity.



Due to the short stroke, the speed controller must be used with extreme caution, as the mechanical system can be damaged if the preset velocities are too high. The positioning limits must be defined using the APL1 command (default setting).

#### **Complex motion profiles**

Attainment of the target velocity is signalled by bit 10 "Target reached" in the statusword of the drive. If the transmission type for the TxPDO1 is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.

| Command | Argument | Function                               | Description                                                                                                                                                                                |
|---------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LL      | Value    | Load Position Range<br>Limits          | Load limit positions (the drive cannot be moved out of these limits). Positive values specify the upper limit and negative values the lower.  The range limits are only active if APL1 is. |
|         |          |                                        | Value: -1.8 · 10° +1.8 · 10°                                                                                                                                                               |
| APL     | 0 - 1    | Activate/Deactivate<br>Position Limits | Activate range limits (LL) (valid for all operating modes except VOLTMOD).  1: Position limits activated 0: Position limits deactivated                                                    |



#### 3.2 Velocity control

#### 3.2.2 Velocity presetting via an analog voltage or a PWM signal

In this operating mode, the drive velocity can be controlled with set value presetting via an analog voltage or a PWM signal.

#### **Basic settings**

CONTMOD mode and SOR1 or SOR2.

The controller parameters POR, I and the sampling rate can be adjusted for the velocity controller. In addition, commands are available for configuring the analog velocity presetting.

| Command | Argument | Function                             | Description                                                                                                                                         |
|---------|----------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| SP      | Value    | Load Maximum Speed                   | Load maximum speed (here: Target velocity at 10 V). Setting applies to all modes (except VOLTMOD). Unit: mm/s Value: 0 10 000                       |
| MV      | Value    | Minimum Velocity                     | Specifies the lowest velocity. Unit: mm/s Value: 0 10 000                                                                                           |
| MAV     | Value    | Minimum Analog<br>Voltage            | Specifies the minimum start voltage. Unit: mV Value: 0 10 000                                                                                       |
| ADL     | -        | Analog Direction Left                | Positive voltages at the analog input result in left-hand movement of the cage bar                                                                  |
| ADR     | -        | Analog Direction Right               | Positive voltages at the analog input result in right-<br>hand movement of the cage bar                                                             |
| DIRIN   | -        | Direction Input                      | Use fault pin as direction input.  Low: left-hand movement (corresponding to ADL command)  High: right-hand movement (corresponding to ADR command) |
| POR     | Value    | Load Velocity Propor-<br>tional Term | Load velocity controller amplification.  Value: 1 255                                                                                               |
| 1       | Value    | Load Velocity Integral<br>Term       | Load velocity controller integral term.  Value: 1 255                                                                                               |
| SR      | Value    | Load Sampling Rate                   | Load sampling rate of the velocity controller as a multiple of the basic sampling time.                                                             |
|         |          |                                      | Value: 1 20                                                                                                                                         |

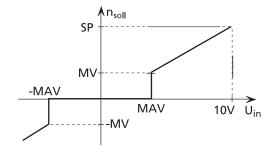
#### **Velocity input**

By default, in LM motors the current speed is determined by evaluating the Hall sensor signals. Additional incremental encoders cannot be connected to motors for analog velocity presetting



#### 3.2 Velocity control

#### **Target value input**


#### **Example:**

The drive is only to start moving with voltages over 100 mV or below -100 mV at the analog input:

■ MAV100

#### Advantage:

As 0 mV is usually difficult to set at the analog input, 0 mm/s is also not easy to implement. The dead band produced by the minimum start voltage prevents the motor from starting as a result of small interference voltages.



#### **Additional settings**

#### **Movement limits**

The LL command can also be used to define a movement range limit for velocity mode. The APL1 command activates monitoring of these limits.

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <a href="Chapter 3.6.1">Chapter 3.6.1</a> "Ramp generator").

#### **Current limitation**

The current limitation values LPC and LCC can be used to protect the drive against overload (see <u>Chapter 3.6.3 "Current controller and I2t current limitation"</u>).

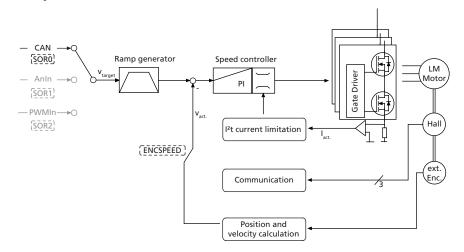
# Velocity control using pulse width modulated (PWM) signal at the analog input (SOR2)

If SOR2 is set in CONTMOD, the pulse duty factor of a PWM signal can be used as velocity target. On delivery:

- Pulse duty factor > 50% → v > 0
- Pulse duty factor = 50% → v = 0
- Pulse duty factor < 50% → v < 0

The commands SP, MV, MAV, ADL and ADR can also be used here.

#### Input circuit


The input circuit at the analog input is designed as a differential amplifier. If the analog input is open, an undefined velocity can be set. The input must be connected to AGND with low-impedance or set to the voltage level of the AGND, in order to generate 0 mm/s. For a protective circuit example, see Chapter 3.4 in the technical manual.



#### 3.2 Velocity control

#### 3.2.3 External encoder as actual velocity value (ENCMOD)

Velocity control with external encoder as actual value



In this operating mode, the drive velocity can be controlled with set-point presetting via FAULHABER commands on PDO2. The velocity is evaluated via an additional encoder, external or built onto the motor. In particular, this enables a specific load speed to be controlled by an incremental encoder at the output.

The analog Hall sensors of the motors are also evaluated in ENCMOD mode for the motor commutation.

#### **Basic settings**

ENCMOD and SOR0 operating mode.

The controller parameters POR and I and the sampling rate can be adjusted for the velocity controller

| Command | Argument | Function                    | Description                                                                             |
|---------|----------|-----------------------------|-----------------------------------------------------------------------------------------|
| POR     | Value    | Load Velocity Proportional  | Load velocity controller amplification.                                                 |
|         |          | Term                        | Value: 1 255                                                                            |
| 1       | Value    | Load Velocity Integral Term | Load velocity controller integral term.                                                 |
|         |          |                             | Value: 1 255                                                                            |
| SR      | Value    | Load Sampling Rate          | Load sampling rate of the velocity controller as a multiple of the basic sampling time. |
|         |          |                             | Value: 1 20                                                                             |
|         |          |                             |                                                                                         |



#### 3.2 Velocity control

#### **Velocity input**

The external incremental encoder's resolution must be specified with 4 edge evaluation using the ENCRES parameter.

In addition to ENCMOD mode, velocity evaluation on the basis of the encoder must be activated using the ENCSPEED command.

| Command   | Argument | Function                    | Description                                                                                                     |
|-----------|----------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| ENCRES    | Value    | Load Encoder Resolu-        | Load resolution of external encoder (4 times pulse/mm).                                                         |
|           |          | tion                        | Value: 8 to 65 535                                                                                              |
| ENCMOD    | -        | Encoder Mode                | Change to encoder mode An external encoder serves as position detector (the current position value is set to 0) |
| ENCSPEED  | -        | Encoder as speed sensor     | Speed via encoder signals in encoder mode                                                                       |
| HALLSPEED | -        | Hall sensor as speed sensor | Speed via hall sensors in encoder mode                                                                          |

#### **Additional settings**

#### **Movement limits**

The LL command can also be used to define a movement range limit for velocity mode. The APL1 command activates monitoring of these limits.

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <u>Chapter 3.6.1 "Ramp generator"</u>).

#### **Current limitation**

The current limitation values LPC and LCC can be used to protect the drive against overload (see <u>Chapter 3.6.3 "Current controller and I2t current limitation"</u>).

#### **Motion control commands**

An overview of all Motion Control commands is given in Chapter 8 "Parameter description".

| Command | Argument | Function             | Description                                                                                                           |
|---------|----------|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| EN      | -        | Enable Drive         | Activate drive                                                                                                        |
| DI      | -        | Disable Drive        | Deactivate drive                                                                                                      |
| V       | Value    | Select Velocity Mode | Activate velocity mode and set specified value as target velocity (velocity control). Unit: mm/sValue: -10 000 10 000 |

#### **Example:**

- Drive motor at 100 mm/s: v100 In order to change the direction, simply assign a negative velocity value (e.g. v-100).
- Stop motor: v0

#### NOTE

Check that the maximum speed SP is not set below the desired target velocity.





#### 3.2 Velocity control

#### **Complex motion profiles**

Attainment of the target velocity is signalled by bit 10 "Target reached" in the statusword of the drive. If the transmission type for the TxPDO1 is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.

| Command | Argument | Function                               | Description                                                                                                                                                                                         |
|---------|----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LL      | Value    | Load Position Range<br>Limits          | Load limit positions (the drive cannot be moved out of<br>these limits). Positive values specify the upper limit and<br>negative values the lower.<br>The range limits are only active if APL is 1. |
|         |          |                                        | Value: -1.8 · 10 <sup>9</sup> +1.8 · 10 <sup>9</sup>                                                                                                                                                |
| APL     | 0 - 1    | Activate/Deactivate<br>Position Limits | Activate range limits (LL) (valid for all operating modes except VOLTMOD).  1: Position limits activated  0: Position limits deactivated                                                            |



#### 3.3 Homing and limit switches

# Overview of the connections of the Faulhaber Motion Control systems available for limit switches and their configuration Limit switch connections and switching level Page 34 Motion control commands (trigger homing sequence) Motion control commands Page 35 Configuration of the behaviour at the limit switch and the homing sequence Configuration of homing and limit switches Page 36

Homing on limit switches can be used to re-initialise the absolute position of an application after switching on.

The GOHOSEQ command is used to perform previously defined homing up to the set limit switch and then perform the actions defined for it. The ramp generator settings for maximum acceleration and the movement limits are taken into account.



#### 3.3 Homing and limit switches

#### 3.3.1 Limit switch connections and switching level

The connections

- AnIn
- Fault
- 3<sup>rd</sup> input

can be used as reference and limit switch inputs.

In addition, the zero crossing of the Hall sensor signals is also available as an index pulse in LM motors. The index pulse occurs once per magnetic pole pitch. The index pulse of an external encoder can also be connected to the fault pin, enabling the actual position to be exactly zeroed.

The AnIn and Fault connections are designed as interrupt inputs, which means that they are edge-triggered. All other inputs are not edge-triggered, so that the signal must be applied for at least 500  $\mu$ s to enable it to be reliably detected. The maximum response time to level changes at all inputs is 500  $\mu$ s.

#### **Digital input configuration**

| Command | Argument | Function        | Description                                  |
|---------|----------|-----------------|----------------------------------------------|
| SETPLC  | -        | Set PLC inputs  | Digital inputs PLC-compatible (24 V level)   |
|         |          |                 | (For level definition, see technical manual) |
| SETTTL  | -        | Set TTL inputs  | Digital inputs TTL-compatible (5 V level)    |
|         |          |                 | (For level definition, see technical manual) |
| REFIN   | -        | Reference Input | Fault pin as reference or limit switch input |
|         |          |                 |                                              |

The limit switch functions for the fault pin are only accepted if REFIN is activated (setting must be saved with SAVE)!

#### **CAUTION!**

#### Configure before applying a voltage



The electronics can be damaged if a voltage is applied to the fault pin while it is not configured as input.

► Configure the fault pin as input first before applying external voltage!

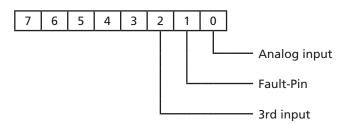


#### 3.3 Homing and limit switches

#### 3.3.2 Motion control commands

The function of the inputs and the homing behaviour are set using the FAULHABER commands described in <u>Chapter 3.3.3 "Configuration of homing and limit switches"</u>. A previously configured homing is then started with the following FAULHABER commands. An overview of all motion control commands is given in <u>Chapter 7.4 "Motion control commands"</u>.

|           |   |                  | Description                                                                                                        |
|-----------|---|------------------|--------------------------------------------------------------------------------------------------------------------|
| GOHOSEQ - | - | 3 .              | Execute FAULHABER homing sequence. A homing sequence is executed (if programmed) irrespective of the current mode. |
| GOHIX -   | - | Go Hall Index    | Move LM motor to Hall zero point (Hall index) and set actual position value to 0.                                  |
| GOIX -    | - | Go Encoder Index | Move to the encoder index at the Fault pin and set actual position value to 0 (ext. encoder).                      |


If the drive is already located in the limit switch when GOHOSEQ is invoked, first of all it moves out of the switch, in the opposite direction to that specified for HOSP.



#### 3.3 Homing and limit switches

#### 3.3.3 Configuration of homing and limit switches

The following commands use the following bit mask for configuration of the limit switch functions:



Set or delete the bit at the position of the required input for each command and assign the resulting numeric value to the commands described below.

#### Polarity and limit switch function

Limit switches can respond to the rising or falling edge (or level).

In addition, the hard blocking function can be configured for the limit switches. The hard blocking function provides reliable protection against overshooting of the range limit switch. If the drive is located in an HB limit switch, then the direction set with HD will be blocked, i.e. the drive can only move further out of the limit switch.

The speed stays at 0 mm/s if target velocity is preset in the wrong direction.

| Command | Argument | Function       | Description                                                                                                                                      |
|---------|----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| НР      | Bit mask | Hard Polarity  | Define valid edge and polarity of respective limit switches:  1: Rising edge and high level effective.  0: Falling edge and low level effective. |
| НВ      | Bit mask | Hard Blocking  | Activate Hard Blocking function for relevant limit switch.                                                                                       |
| HD      | Bit mask | Hard Direction | Presetting of direction that is blocked with HB of respective limit switch.  1: Right blocked  0: Left blocked                                   |

#### **Example:**

■ Setting the hard blocking function for fault pin and 3rd input:  $2^1+2^2=2+4=6$  → HB6

#### **Definition of homing behaviour**

In order to be able to execute a homing sequence with the command GOHOSEQ, a homing sequence must be defined for a specific limit switch! To do this, at least one of the following actions must be defined for the limit switch. Definition of the hard blocking behaviour is an additional option.

| Command | Argument | Function                               | Description                                                                                                                          |
|---------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| SHA     | Bit mask | Set Home Arming for<br>Homing Sequence | Homing behaviour (GOHOSEQ): Set position value to 0 at edge of respective limit switch                                               |
| SHL     | Bit mask | Set Hard Limit for<br>Homing Sequence  | Homing behaviour (GOHOSEQ): Stop motor at edge of respective limit switch.                                                           |
| SHN     | Bit mask | Set Hard Notify for<br>Homing Sequence | Homing behaviour (GOHOSEQ): If an edge is at the respective limit switch, the hard notify bit is set in the statusword of the drive. |

These settings must be saved with SAVE so that they are available immediately after switching on!



## 3.3 Homing and limit switches

#### **Example:**

- Homing with 3<sup>rd</sup> input as reference input (rising edge):
  - HP4 Low level or falling edge was evaluated at AnIn and at the fault pin, the rising edge is evaluated at the 3<sup>rd</sup> input.
  - SHA4 Activate a homing sequence for 3<sup>rd</sup> input (all others are in bit mask = 0) Action: Set Pos = 0 on reaching the limit switch
  - SHL4 Activate a homing sequence for 3<sup>rd</sup> input (all others are in bit mask = 0) Action: Stop motor
  - SHN4 Activate a homing sequence for 3<sup>rd</sup> input (all others are in bit mask = 0) Action: Notify in statusword of the drive or via TxPD01

## **Homing Speed**

| Command | Argument | Function          | Description                                                                      |
|---------|----------|-------------------|----------------------------------------------------------------------------------|
| HOSP    | Value    | Load Homing Speed | Load speed and direction of rotation for homing (GO-HOSEQ, GOHIX).<br>Unit: mm/s |

#### **Example:**

■ Homing with 100 mm/s and negative direction: HOSP-100

### Direct programming via HA, HL and HN commands

These special commands can be used to define actions that are to be triggered at an edge of the relevant input, independently of a homing sequence. A programmed limit switch function will remain effective until the preselected edge occurs. The programming can be changed with a new command before an edge occurs.

| Command | Argument | Function    | Description                                                                                                                    |
|---------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| НА      | Bit mask | Home Arming | Set position value to 0 and delete relevant HA bit at edge of respective limit switch. Setting is not saved                    |
| HL      | Bit mask | Hard Limit  | Stop motor and delete relevant HL bit at edge of respective limit switch. Setting is not saved.                                |
| HN      | Bit mask | Hard Notify | If an edge is at the respective limit switch, the hard notify bit is set in the statusword of the drive. Setting is not saved. |

The settings are not saved with the SAVE command, therefore all configured limit switches are inactive again after power-on.

#### **HL/SHL command:**

#### ■ Positioning mode

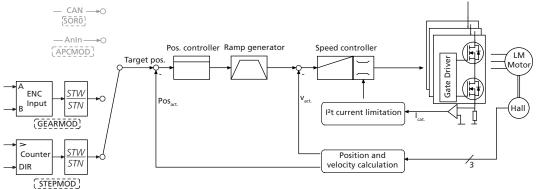
When the edge occurs, the motor positions itself on the reference mark with maximum acceleration.

#### ■ Velocity controller mode

The motor is decelerated at the set acceleration value when the edge occurs, i.e. it goes beyond the reference mark. The reference mark can be precisely approached with a subsequent positioning command (command M).

Advantage: No abrupt motion changes.




## 3.4 Extended operating modes

| Guide                                          |         |
|------------------------------------------------|---------|
| Stepper motor mode                             | Page 38 |
| Gearing mode (electronic gear)                 | Page 40 |
| Voltage regulator mode                         | Page 42 |
| Current control with analog current presetting | Page 43 |
|                                                |         |
|                                                |         |

Use the CONTMOD command to revert from an enhanced operating mode to normal mode.

## 3.4.1 Stepper motor mode

### Controller structure in stepper motor mode



In stepper motor mode the drive moves one programmable angle further for each pulse at the analog input.

- The number of steps per magnetic patch is freely programmable and of a very high resolution (encoder resolution)
- The individual step widths are freely programmable
- No detent force
- The full dynamics of the motor can be used
- The motor is very quiet
- The motor monitors actual position so that no steps are "lost" (even with maximum dynamics)
- No motor current flows in settled state (actual position reached)
- High efficiency



## 3.4 Extended operating modes

### **Basic settings**

In stepper motor mode, the analog input acts as frequency input. The error output must be configured as direction input if the direction is to be changed via a digital signal.

Alternatively, the direction can also be preset via the commands ADL and ADR.

| Command | Argument | Function               | Description                                                         |
|---------|----------|------------------------|---------------------------------------------------------------------|
| STEPMOD | -        | Stepper Motor Mode     | Change to stepper motor mode                                        |
| DIRIN   | -        | Direction Input        | Fault pin as direction input                                        |
| ADL     | -        | Analog Direction Left  | Positive voltages at the analog input result in Linksbewegung       |
| ADR     | -        | Analog Direction Right | Positive voltages at the analog input result in Rechts-<br>bewegung |

### Input

Maximum input frequency: see technical manual.

Level: 5 V TTL or 24 V PLC-compatible, depending on configuration.

The number of steps of the emulated stepper motor can be set to virtually any required settings using the following formula:

Traversing distance = pulses 
$$\cdot \frac{\text{STW}}{\text{STN}} \cdot \tau_m$$

Traversing distance ... revolutions generated on the drive

Pulses ... number of pulses at the frequency input (= number of steps)

 $\tau_m$  ... magnetic pole pitch in mm

| Command | Argument | Function         | Description                                                             |
|---------|----------|------------------|-------------------------------------------------------------------------|
| STW     | Value    | Load Step Width  | Load step width for step motor and gearing mode                         |
|         |          |                  | Value: 1 65 535                                                         |
| STN     | Value    | Load Step Number | Load number of steps per magnetic pitch for step motor and gearing mode |
|         |          |                  | Value: 1 65 535                                                         |

## **Example:**

The motor should move through 1/1 000th of a magnetic pole pitch with each input pule:

- STW1
- STN1000

### **Additional settings**

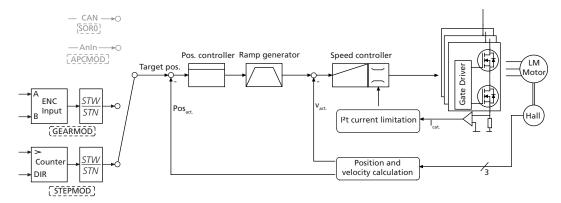
#### **Movement limits**

The LL command can be used to define a limit for the movement range for stepper motor mode also. The APL1 command activates monitoring of these limits.

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <a href="Chapter 3.6.1">Chapter 3.6.1</a> "Ramp generator").

### **Current limitation**


The current limitation values LPC and LCC can be used to protect the drive against overload (see <a href="Chapter 3.6.3">Chapter 3.6.3 "Current controller and I2t current limitation"</a>).



## 3.4 Extended operating modes

## 3.4.2 Gearing mode (electronic gear)

### Controller structure in gearing mode



Gearing mode enables the use of an external encoder as set-point source for the position. This enables several drives to be synchronised. Several drives can be synchronised in this way. If the direction is to be changed by a digital signal, the function of the fault pin must be reconfigured as a direction input.

Alternatively, the direction can also be preset via the commands ADL and ADR.

### **Basic settings**

| Command | Argument | Function        | Description                  |  |
|---------|----------|-----------------|------------------------------|--|
| GEARMOD | -        | Gearing Mode    | Change to gearing mode       |  |
| DIRIN   | -        | Direction Input | Fault pin as direction input |  |

## Input

The two channels of an external encoder are connected to connections AnIn and AGND, which may need to be connected to the 5 V encoder supply via a 2.7 k $\Omega$  pull-up resistor.

The gear ratio between the pulses per count count of the external encoder and the resulting movement of the motor can be set using the following formula:

Traversing distance = pulses 
$$\cdot \frac{\text{STW}}{\text{STN}} \cdot \tau_m$$

Traversing distance ... traversing distance of the linear motor in mm
Pulses ... actually counted pulses during four edge evaluation

 $au_{\scriptscriptstyle m}$  ... magnetic pole pitch in mm

| Command | Argument | Function         | Description                                                             |
|---------|----------|------------------|-------------------------------------------------------------------------|
| STW     | Value    | Load Step Width  | Load step width for step motor and gearing mode                         |
|         |          |                  | Value: 1 65 535                                                         |
| STN     | Value    | Load Step Number | Load number of steps per magnetic pitch for step motor and gearing mode |
|         |          |                  | Value: 1 65 535                                                         |



## 3.4 Extended operating modes

#### **Example:**

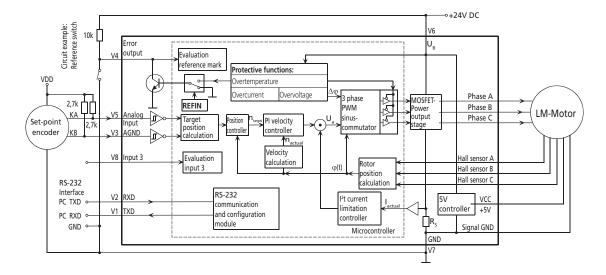
Motor has to move one magnetic pitch at 1 000 pulses of the external encoder:

- STW1
- STN1000

## **Additional settings**

#### **Movement limits**

The range limits set with LL are also active in gearing mode with APL1.

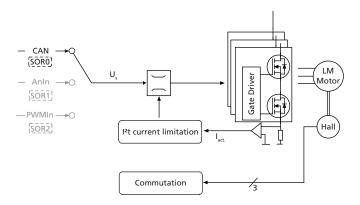

#### Ramp generator

The slopes of the acceleration and deceleration ramps, and the maximum speed can be defined using the AC, DEC and SP commands (see <u>Chapter 3.6.1 "Ramp generator"</u>).

#### **Current limitation**

The current limitation values LPC and LCC can be used to protect the drive against overload (see <u>Chapter 3.6.3 "Current controller and I2t current limitation"</u>).

Schaltungsbeispiel Gearing Mode für MCLM30xx und Richtungsvorgabe über den Fault-Pin






## 3.4 Extended operating modes

## 3.4.3 Voltage regulator mode

### Controller structure in voltage regulator mode



In voltage regulator mode a motor voltage is output proportional to the preset value. Current limitation remains active.

With this mode, it is possible to use a higher level controller. The controller then serves only as a power amplifier.

## **Basic settings**

| Command | Argument | Function           | Description                                                |
|---------|----------|--------------------|------------------------------------------------------------|
| VOLTMOD | -        | Set Voltage Mode   | Activate Voltage Regulator Mode                            |
| U       | Value    | Set Output Voltage | Output motor voltage (corresponds to -UB +UB) at SORO only |
|         |          |                    | Value: -32 767 32 767                                      |

## Input

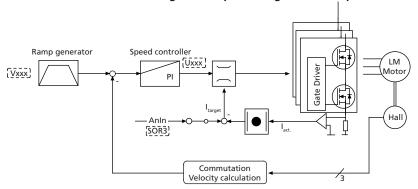
| SOR0 (CAN/PDO2) | SOR1 (Anin) | SOR2 (PWMIn) | <b>U</b> мот    |  |
|-----------------|-------------|--------------|-----------------|--|
| U-32767         | -10 V       | 0 %          | -U <sub>B</sub> |  |
| U0              | 0 V         | 50 %         | 0               |  |
| U32767          | 10 V        | 100 %        | +Ив             |  |
|                 |             |              |                 |  |

## **Additional settings**

### **Current limitation**

The current limitation values LPC and LCC can be used to protect the drive against overload.

42




## 3.4 Extended operating modes

## 3.4.4 Current control with analog current presetting

### **Fixed direction (SOR3)**

Controller structure for analog current presetting with fixed preset direction



You can switch to analog target current presetting with the SOR3 command. In this way, both in velocity mode and in voltage regulator mode, current absolute value can be limited proportional to the voltage at the analog input. The set current is weighted with the maximum current LPC.

The motor is activated either in velocity mode by a previously fixed target velocity, or in voltage regulator mode via a voltage value. The error output must be configured as direction input if the direction is to be changed via a digital signal.

## **Basic settings**

| Command | Argument | Function            | Description                             |
|---------|----------|---------------------|-----------------------------------------|
| SOR     | 3        | Source for Velocity | 3:Current target value via analog input |
| LPC     | Value    | Load Peak Current   | Load peak current (mA).                 |
|         |          | Limit               | Value: 0 12 000                         |

### Input

If 10 V are present at the analog input, the current is accordingly limited to the maximum current set with LPC.

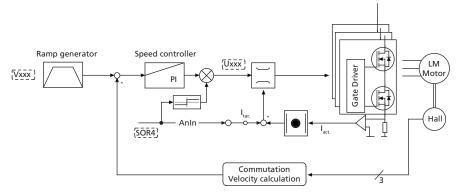
Even if negative voltages are present at the analog input, the current is limited to the absolute value of the applied voltage. Negative target current presettings therefore have no effect on the direction!

| SOR3 (AnIn) |     | Nmax |  |
|-------------|-----|------|--|
| -10 V       | LPC | SP   |  |
| 0 V         | 0   | SP   |  |
| 10 V        | LPC | SP   |  |

## Warning!



### Risk of destruction


In current control mode with analog current presetting the internal I<sup>2</sup>t current limitation is deactivated.



## 3.4 Extended operating modes

## Direction depending on current target value (SOR4)

Controller structure for analog current presetting with variable direction of rotation



You can switch to analog target current presetting with the SOR4 command. In this way, both in velocity mode and in voltage regulator mode, current absolute value can be limited proportional to the voltage at the analog input. The set current is weighted with the maximum current LPC.

The motor is activated either in velocity mode by a previously fixed target velocity, or in voltage regulator mode via a voltage value. The direction is determined from the sign of the current target value.

This mode corresponds to direct current control.

### **Basic settings**

| Command | Argument | Function            | Description                                                                                              |
|---------|----------|---------------------|----------------------------------------------------------------------------------------------------------|
| SOR     | 4        | Source for Velocity | 4: Target current value via analog input with presetting of the direction via the sign of the set-point. |
| LPC     | Value    | Load Peak Current   | Load peak current (mA).                                                                                  |
|         |          | Limit               | Value: 0 12 000                                                                                          |

### Input

If 10 V are present at the analog input, the current is accordingly limited to the maximum current set with LPC.

| SOR4 (AnIn) | <b>I</b> max | Vmax |
|-------------|--------------|------|
| -10 V       | LPC          | -SP  |
| 0 V         | 0            | SP   |
| 10 V        | LPC          | SP   |

44



## 3.5 Special fault output functions

The error connection (fault pin) can be configured as input or output for different tasks:

| Command | Function        | Description                                                                                                    |
|---------|-----------------|----------------------------------------------------------------------------------------------------------------|
| ERROUT  | Error Output    | Fault pin as error output (default)                                                                            |
| ENCOUT  | Encoder Output  | Fault pin as pulse output                                                                                      |
| DIGOUT  | Digital Output  | Fault pin as digital output. The output is set to low level.                                                   |
| DIRIN   | Direction Input | Fault pin as direction input                                                                                   |
|         |                 | ► Velocity control (see <u>Chapter 3.2 "Velocity control"</u> ),                                               |
|         |                 | ► Stepper motor mode (see <u>Chapter 3.4.1 "Stepper motor mode"</u> ),                                         |
|         |                 | ► Gearing mode (see <u>Chapter 3.4.2 "Gearing mode (electronic gear)"</u> ),                                   |
|         |                 | ► Voltage regulator mode (see <u>Chapter 3.4.3 "Voltage regulator mode"</u> ).                                 |
|         |                 | ► Current control with analog current presetting (see <a cur-"="" href="Chapter 3.4.4">Chapter 3.4.4 "Cur-</a> |
|         |                 | rent control with analog current presetting").                                                                 |
| REFIN   | Reference Input | Fault pin as reference or limit switch input                                                                   |
|         |                 | ▶ Homing and limit switches (see <u>Chapter 3.3 "Homing and limit switches"</u> )                              |
| POSOUT  | Position Output | Fault pin as output for display of the condition: "target position reached".                                   |

## Fault pin as error output

In ERROUT mode the output is set as soon as one of the following errors occurs:

- One of the set current limitation values (LPC, LCC) is exceeded
- Set maximum permissible speed deviation (DEV) is exceeded
- Overvoltage detected
- Maximum coil or MOSFET temperature exceeded

## **Additional settings**

## **Delayed signalling**

In order to hide the transient occurrence of errors during the acceleration phase, for example, an error delay can be set which specifies how long an error must be present before it is displayed at the error output:

| Command | Argument | Function              | Description                      |
|---------|----------|-----------------------|----------------------------------|
| DCE     | Value    | Delayed Current Error | Delayed error output with ERROUT |
|         |          |                       | Value in 1/100 sec.              |

## Example:

Wait 2 seconds before displaying error:

#### ■ DCE200

If one of the errors above occurs, a corresponding Emergency Object is sent to the CAN network, provided the Emergency mask in Object 0x2320 for the corresponding error is set to 1. See also <a href="Chapter 8.2">Chapter 8.2 "Manufacturer-specific objects"</a> under "FAULHABER Fault Register".



## 3.5 Special fault output functions

## Fault pin as pulse output:

In the ENCOUT mode the fault pin is used as pulse output, which outputs an adjustable number of pulses per magnetic pitch. The pulses are derived from the Hall sensor signals of the BL motors and are limited to 4000 pulses per second.

| Command | Argument | Function          | Description                     |  |
|---------|----------|-------------------|---------------------------------|--|
| LPN     | Value    | Load Pulse Number | Preset pulse number for ENCOUT. |  |
|         |          |                   | Value: 1 to 255                 |  |

#### **Example:**

Output 16 pulses per magnetic pitch at the fault pin:

■ LPN16

At 100 mm/s,  $100 \cdot 16 = 1600$  pulses per second are generated at the fault pin.

### NOTE



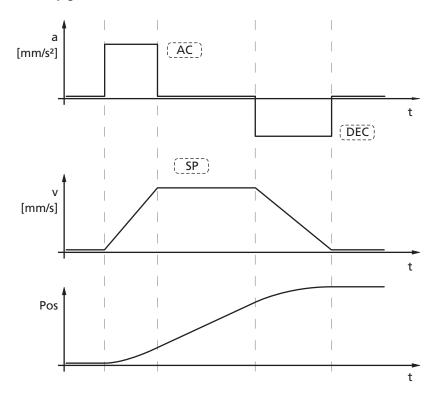
Bei Geschwindigkeiten, die bei eingestelltem LPN-Wert mehr als die maximal mögliche Impulszahl erzeugen würden, wird die maximale Anzahl am Fault-Pin generiert. The set pulses are precisely achieved, but the timing does not necessarily have to exactly agree (delays possible).

Position determination via pulse counting is therefore possible, provided that no change occurs in the direction and the maximum possible pulse number is not exceeded.

## Fault pin as digital output

In DIGOUT mode, the fault pin can be used as universal digital output. The digital output can be set or cleared using the following commands:

| Command | Argument | Function      | Description                             |
|---------|----------|---------------|-----------------------------------------|
| CO      | -        | Clear Output  | Set digital output DIGOUT to low level  |
| SO      | -        | Set Output    | Set digital output DIGOUT to high level |
| TO      | -        | Toggle Output | Toggle digital output DIGOUT            |




#### 3.6 Technical information

### 3.6.1 Ramp generator

In all modes, apart from voltage regulator mode and current control, the set-point is controlled by the ramp generator.

## Basic ramp generator function



This can be used to separately set the parameters for maximum acceleration (AC), maximum delay (DEC) and maximum speed (SP) for specific applications.

## **CAUTION!**

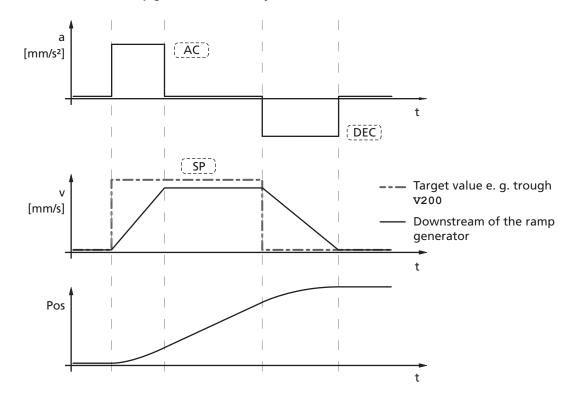
## Overshoot at maximum acceleration / delay



If the acceleration (AC) or delay (DEC) is set to the maximum value of 30 000 mm/s<sup>2</sup> or higher the effect of the ramp generator is switched off. With this setting, the maximum possible dynamic of the drive system is achieved. At this setting, at times the drive swings clearly beyond the target position.

▶ Please note and take into account this fact during use.

## **Basic settings**


| Command | Argument | Function           | Description                     |
|---------|----------|--------------------|---------------------------------|
| AC      | Value    | Load Command Ac-   | Load acceleration value (1/s²). |
|         |          | celeration         | Value: 0 30 000                 |
| DEC     | Value    | Load Command Ac-   | Load deceleration value (1/s²). |
|         |          | celeration         | Value: 0 30 000                 |
| SP      | Value    | Load Maximum Speed | Load maximum speed (mm/s) .     |
|         |          |                    | Value: 0 10 000                 |



## 3.6 Technical information

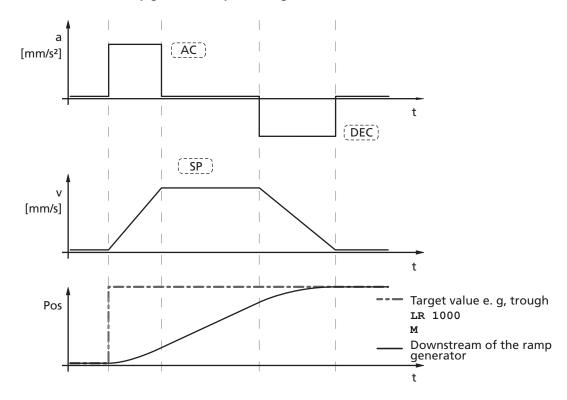
## Ramp generator in velocity mode

Intervention of the ramp generator in velocity mode



In velocity mode the ramp generator acts like a filter on the target velocity. The target value is limited to the maximum speed value (SP) and target value changes are limited according to the deceleration and acceleration ramps (AC and DEC).

## Notification of the higher level control


Attainment of the target velocity is signalled by bit 10 "Target reached" in the statusword of the drive. If the transmission type for the TxPDO1 is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.



## 3.6 Technical information

## Ramp generator in positioning mode

Intervention of the ramp generator in positioning mode



In positioning mode a preset speed is determined by the position controller from the difference between the target position and actual position.

In the ramp generator, the preset speed output by the position controller is limited to the maximum speed value (SP) and accelerations are limited according to the acceleration ramp (AC).

In positioning mode the deceleration process is not extended as, before reaching the limit position, the speed has to be reduced so that the target position can be reached without overshooting.

According to the equation of motion:

2a s = 
$$v^2 \rightarrow v_{max} = \sqrt{2a}$$
 s  
a: Acceleration [m/s²]  
v: Velocity [m/s]  
s: remaining distance [m]

the maximum speed n<sub>max</sub> must be limited proportional to the remaining distance.

The allowable delay, or rather the technically possible delay depending on the motor and inertia of the load, is set here using the parameter DEC.

49



## 3.6 Technical information

## Notification of the higher level control

Attainment of the target position is signalled by bit 10 "Target reached" in the statusword of the drive. If the transmission type for the TxPDO1 is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.

## **Complex motion profiles**

More complex motion profiles can be generated through appropriate presetting of new values (maximum speed, acceleration, end position) during positioning.

After a value change, simply execute a new motion start command (M).

The positioning range can be set using the command LL and activated using APL.

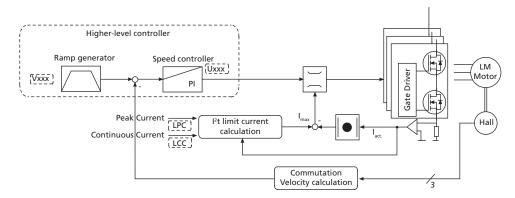
| Command | Argument | Function                               | Description                                                                                                                                                                                         |
|---------|----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LL      | Value    | Load Position Range<br>Limits          | Load limit positions (the drive cannot be moved out of<br>these limits). Positive values specify the upper limit and<br>negative values the lower.<br>The range limits are only active if APL is 1. |
|         |          |                                        | Value: -1.8 · 109 +1.8 · 109                                                                                                                                                                        |
| APL     | 0 - 1    | Activate/Deactivate<br>Position Limits | Activate range limits (LL) (valid for all operating modes except VOLTMOD).  1: Position limits activated  0: Position limits deactivated                                                            |



### 3.6 Technical information

#### 3.6.2 Sinus commutation

The outstanding feature of FAULHABER motion controllers for motors is their so-called sinus commutation. This means that the specified magnetic field is always ideally positioned relative to the cage bar. As a result, force fluctuations can be reduced to a minimum, even at very low speeds. In addition, the motor runs particularly quietly.


The sinus commutation is further enhanced by so-called flat-top modulation, which enables more modulation. As a result, higher no-load speeds are possible.

The SINO command can even be used to set the system so that the sinus commutation switches to block commutation in the upper speed range. This full modulation enables the complete speed range of the motor to be utilised.

| Command | Function          | Description                                    |
|---------|-------------------|------------------------------------------------|
| SIN     | Sinus commutation | 0: Full control (block mode with full control) |
|         |                   | 1: Limited to sinusoidal form (basic setting)  |

### 3.6.3 Current controller and I<sup>2</sup>t current limitation

## Intervention of the current limiting controller



The FAULHABER Motion Controllers are equipped with an integral current controller, which enables force limitation.

The current controller operates as a limitation controller. Depending on the previous loading, the I<sup>2</sup>t current limitation limits to the allowable peak current or continuous current. As soon as the motor current exceeds the currently allowed maximum value the current controller limits the voltage.

Due to its design as a current limiting controller, current control in the thermally relaxed state has no effect on the dynamic of the velocity control. The time response of this limitation can be adjusted using the parameter CI.

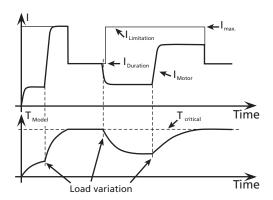
The default values for CI limit the current to the allowable value after around 5ms.



## 3.6 Technical information

## **Basic settings**

| Command | Argument | Function              | Description                               |
|---------|----------|-----------------------|-------------------------------------------|
| LPC     | Value    | Load Peak Current     | Load peak current                         |
|         |          | Limit                 | Value: 0 to 12 000 mA                     |
| LCC     | Value    | Load Continuous Cur-  | Load continuous current                   |
|         |          | rent Limit            | Value: 0 to 12 000 mA                     |
| CI      | Value    | Load Current Integral | Load integral term for current controller |
|         |          | Term                  | Value: 1255                               |


### Mode of operation of the current controller

When the motor starts, the peak current is preset as the set-point for the current controller. As the load increases, the current in the motor constantly increases until it finally reaches the peak current. The current controller then comes into operation and limits the current to this set-point.

A thermal current model operating in parallel calculates a model temperature from the actually flowing current. If this model temperature exceeds a critical value, continuous current is switched to and the motor current is regulated to this. Only when the load becomes so small that the temperature falls below the critical model temperature is peak current permitted again.

The aim of this so-called I<sup>2</sup>t current limiting is not to heat the motor above the thermally allowable temperature by selecting a suitable continuous current. On the other hand, a high load should be temporarily possible in order to enable very dynamic movements.

#### Function of the I't current limitation





### 3.6 Technical information

## 3.6.4 Overtemperature protection

If the MOSFET temperature of the external controllers exceeds a preset limit value, the motor is switched off. The following conditions must be fulfilled in order to reactivate the motor:

- Temperature below a preset limit value
- Target velocity set to 0 mm/s
- Actual motor speed less than 50 mm/s

#### NOTE

### Determining the coil temperature



The housing temperature is measured and the power loss concluded from the current measurement. The MOSFET or coil temperature is calculated from these values via a thermal model. In most applications, this method represents a thermal motor protection device.

## 3.6.5 Under-voltage monitoring

If the supply voltage falls below the lower voltage threshold, the power stage is switched off. The Motion Controller remains active. When the voltage returns within the permissible range, the power stage is switched on again immediately.

## 3.6.6 Overvoltage regulation

If the motor is operated as a generator, it produces energy. Usually power supply units are not able to feed this energy back into the power line. For this reason, the supply voltage at the motor increases, and depending on the speed, the allowable maximum voltage may be exceeded.

In order to avoid irreparable damage to components, FAULHABER motion controllers for motors contain a controller which adjusts the displacement angle if a limit voltage (32 V) is exceeded. As a result, the energy generated in the motor is converted, and the voltage of the electronics remains limited to 32 V. This method protects the drive during generating operation and rapid braking.

## 3.6.7 Setting the controller parameters for velocity and position controller

The preset controller parameters must be optimised in order to optimally adjust the controller to the respective application.

#### NOTE

### Controller sampling rate



The digital controller operates with a sampling rate of 100  $\mu$ s. When needed the sampling rate can be increased up to 2 ms via the parameter sampling rate (object 0x2330.01).



### 3.6 Technical information

#### Default behaviour:

Without further settings, the gain set in the proportional term parameter POR is effective for the velocity controller.

In positioning mode, the gain set via the proportional term parameter POR is increased within the target corridor by the value of the derivative term parameter PD. This enables faster adjustment to the stoppage in the target position without having to over-stimulate the controller during the transition phenomena. To this end, the parameter PD must be set carefully and should typically be a maximum of 50% of the base value POR; otherwise there is a risk of instability.

### The following controller parameters are available:

| Command | Function                    | Description                             |
|---------|-----------------------------|-----------------------------------------|
| POR     | Load Velocity Proportional  | Load velocity controller amplification. |
|         | Term                        | Value: 1 – 255.                         |
| I       | Load Velocity Integral Term | Load velocity controller integral term  |
|         |                             | Value: 1 – 255.                         |
| PP      | Load Position Proportional  | Load position controller amplification. |
|         | Term                        | Value: 1 – 255.                         |
| PD      | Load Position D-Term        | Load position controller D-term.        |
|         |                             | Value: 1 – 255.                         |
| SR      | Load Sampling Rate          | Sampling rate setting.                  |
|         |                             | Value: 1 20                             |

These values are suitably preassigned by selecting a motor type in the Motion Manager's Motor Wizard.

The controller tuning Wizard in Motion Manager can be used to further adjust several controller parameters, in order to optimally adjust the controller to the respective application.

#### Possible procedure

It is recommended that you begin with the default settings of the Motor Wizard and then further optimise the velocity controller first and then the position controller.

## Optimise position controller:

Specify appropriate motion profiles for the application, e.g. using the controller tuning Wizard. If the system does not function stably with these settings, stability can be achieved by reducing the I term of the velocity controller or reducing the P term of the position controller. Then increase the P term of the position controller gradually up to the system's stability limit. The stability can then be restored, either by increasing the D term of the position controller or by reducing the I term of the velocity controller.



## 3.6 Technical information

## Special mode for position control

The SR command can be used to activate a special position control mode (Gain Scheduling). To this end, the value 100 must be added to the required SR setting.

#### **Example:**

Required setting SR10 with special mode: SR110.

If this mode is activated, the parameter POR is successively reduced in a position-controlled application as soon as the drive in within the target corridor (can be set using the CORRIDOR command). This enables a much "gentler" stoppage to be achieved after reaching the target position. This enables much "gentler" stoppage to be achieved in the target position. As soon as the drive leaves the target corridor, POR is immediately increased back to the set value.



| Guide                            |         |
|----------------------------------|---------|
| Introduction                     | Page 56 |
| PDOs (process data objects)      | Page 58 |
| SDO (service data object)        | Page 60 |
| Emergency Object (error message) | Page 62 |
| SYNC object                      | Page 63 |
| NMT (network management)         | Page 64 |
| Entries in the object dictionary | Page 67 |
|                                  |         |

#### 4.1 Introduction

- CANopen is a standardised software protocol based on the CAN hardware (Controller Area Network).
- The international CAN Organisation CAN in Automation e.V. (CiA) defines the communication profile in DS301 (Description of the communication structure and methods for parameter access, control and monitoring functions).
- Device profiles are specified for the different devices, such as DSP402 for drives and DS401 for I/O devices (general device description from the view of the user).
- Public data is managed using the object dictionary (Parameter table, access to entries via Index and Subindex).
- There are two data communication objects:
  - PDOs (Process data objects for control and monitoring)
  - SDOs (Service data objects for access to the object dictionary)
- Further objects are available for network management, node monitoring and synchronisation.
- CANopen supports up to 127 nodes per network segment with transmission rates up to 1 MBit/s.
- The communication is message based, each communication object is assigned its own 11 bit identifier.



## 4.1 Introduction

FAULHABER Motion Controllers support the CANopen communication profile in accordance with CiA DS301 V4; the following communication objects are supported:

- 3 transmit PDOs
- 3 receive PDOs
- 1 server SDO
- 1 emergency object
- NMT with Node Guarding
- 1 SYNC object

The identifier configuration of the CANopen objects is defined according to the "Predefined Connection Set" (see <u>Chapter 4.6 "NMT (network management)"</u>). Data assignment of the PDOs is permanently preset (static PDO mapping).

Many manufacturers offer CANopen libraries for PC and PCS systems, via which the individual objects can be conveniently accessed, without having to worry about the internal structure.

The FAULHABER Motion Manager also enables easy access to the individual objects via a graphic user interface.



## 4.2 PDOs (process data objects)

PDOs correspond to a CAN message frame with up to 8 bytes and are used to transmit process data, i.e. to control and monitor the device's behaviour. The PDOs are designated from the point of view of the field device. Receive PDOs (RxPDOs) are received by the field device and contain, e.g. control data, send PDOs (TxPDOs) are sent by the field device and contain, e.g. monitoring data.

PDOs can only be transmitted if the device is in "Operational" state (see <u>Chapter 4.6 "NMT (network management)"</u>).

#### PDO communication types:

- Event controlled: Data are automatically sent following a change to the device.
- Remote Request (RTR): Data are sent following a request message frame.
- Synchronised: Data are sent following receipt of a SYNC object, see <a href="Chapter 4.5" SYNC object">Chapter 4.5 "SYNC object"</a>.

#### FAULHABER Motion Controllers provide the following PDOs:

- Receive PDO1: Controlword according to DSP402
- Send PDO1: Statusword according to DSP402
- Receive PDO2: FAULHABER command
- Send PDO2: FAULHABER query data (RTR)
- Receive PDO3: FAULHABER trace configuration
- Send PDO3: FAULHABER trace data (RTR)

#### **RxPDO1: Controlword**

| 11 bit identifier      | 2 bytes | user data |
|------------------------|---------|-----------|
| 0x200 (512d) + Node ID | LB      | НВ        |

Contains the 16 bit controlword according to CiA DSP402, which controls the state machine of the drive unit. The PDO refers to object index 0x6040 in the object dictionary. The bit allocation is described in <a href="Chapter 6.1">Chapter 6.1</a> "Device Control".

## **TxPDO1: Statusword**

| 0x180 (384d) + node ID LB HB | 11 bit identifier      | 2 byte | es user data |  |  |  |
|------------------------------|------------------------|--------|--------------|--|--|--|
|                              | 0x180 (384d) + node ID | LB     | НВ           |  |  |  |

Contains the 16 bit controlword according to CiA DSP402, which displays the state machine of the drive unit. The PDO refers to object index 0x6041 in the object dictionary. The bit allocation is described in Chapter 6.1 "Device Control".

## **RxPDO2: FAULHABER Command**

| 11 bit identifier      | 5 bytes | user data |     |     |     |  |
|------------------------|---------|-----------|-----|-----|-----|--|
| 0x300 (768d) + Node-ID | Cmd     | LLB       | LHB | HLB | HHB |  |

Is made available by the FAULHABER channel for transmission of manufacturer-specific commands. All the parameters and control commands of the drive unit can be transmitted with the help of this PDO. Transmissions are always 5 bytes long, whereby the first byte gives the command and the following 4 bytes give the argument as a long integer value. A description of the commands is given in Chapter 8.4 "FAULHABER commands".



## 4.2 PDOs (process data objects)

#### **TxPDO2: FAULHABER Data**

| 11 bit identifier      | 6 bytes | user data |     |     |     |       |  |
|------------------------|---------|-----------|-----|-----|-----|-------|--|
| 0x280 (640d) + Node-ID | Cmd     | LLB       | LHB | HLB | HHB | Error |  |

FAULHABER Channel for query commands. A request (RTR) on this PDO returns the data requested with the previously sent command. Transmissions are always 6 bytes long, whereby the first byte gives the command and the following 4 bytes give the required value as a long integer followed by an error code. The error byte can also be used to check whether a send command was successfully executed or not (1 = command successfully executed, for further error codes see <a href="Chapter 8.4" FAULHABER commands"">Chapter 8.4 "FAULHABER commands"</a>).

#### **RxPDO3: Trace Configuration**

| 11 bit identifier       | 5 bytes us | er data |    |         |        |  |
|-------------------------|------------|---------|----|---------|--------|--|
| 0x400 (1024d) + node ID | Mode 1     | Mode 2  | TC | Packets | Period |  |

This PDO is used to set the trace mode, via which the internal parameters can be quickly read out.

The data configuration looks like this:

Byte 0: Mode for Parameter 1

Byte 1: Mode for Parameter 2

Byte 2: Transfer with time code [1/0]

Byte 3: Number of packets to be transmitted per request (Default: 1)

Byte 4: Time interval between packets (Default: 1 ms)

The possible operating modes for Parameters 1 and 2 are described in <a href="Chapter 5.2" "Trace"</a>.

#### **TxPDO3: Trace Data**

| 11 bit identifier      | 3 to 8 by | te user data | ı     |       |       |       |       |       |
|------------------------|-----------|--------------|-------|-------|-------|-------|-------|-------|
| 0x380 (896d) + Node-ID | Data0     | Data1        | Data2 | Data3 | Data4 | Data5 | Data6 | Data7 |

A request (RTR) on this PDO returns the trace data according to the setting made via RxPDO3 (see <u>Chapter 5.2 "Trace"</u>).



## 4.3 SDO (service data object)

The service data object can be used to read and describe parameters in the object dictionary (OD). They are accessed via the 16 bit index and the 8 bit subindex. The Motion Controller functions as a server, i.e. it makes data available (upload) at the request of the client (PC, PCS) (Upload) or receives data from the client (download).

| Byte0             | Byte1-2      | Byte3          | Byte4                   |
|-------------------|--------------|----------------|-------------------------|
| Command Specifier | 16 bit index | 8 bit subindex | 1-4 byte parameter data |

→ Entry in the object dictionary

A differentiation is made between 2 SDO transfer types:

- Expedited transfer: Transfer of 4 bytes maximum
- Segmented transfer: Transfer of more than 4 bytes

As, apart from for query of the version and the device name, only 4 bytes maximum are transferred by the FAULHABER Motion Controllers, only the expedited transfer is described in the following.

The size of the message frames is always 8 bytes and their structure is as follows:

Read OD entries: Client → Server, Upload Request

| 11 bit identifier       | 8 bytes use | er data  |          |          |   |   |   |   |  |
|-------------------------|-------------|----------|----------|----------|---|---|---|---|--|
| 0x600 (1536d) + Node-ID | 0x40        | Index LB | Index HB | Subindex | 0 | 0 | 0 | 0 |  |
|                         |             |          |          |          |   |   |   |   |  |

#### Server → Client, Upload Response

| 11 bit identifier       | 8 bytes us | er data  |          |          |          |          |          |          |
|-------------------------|------------|----------|----------|----------|----------|----------|----------|----------|
| 0x580 (1408d) + Node-ID | 0x4x       | Index LB | Index HB | Subindex | LLB (D0) | LHB (D1) | HLB (D2) | HHB (D3) |

Byte0 (0x4x) gives the number of valid data bytes in D0-D3 and the transfer type and is coded for expedited transfer ( $\leq$  4 data bytes) as follows:

- 1 data byte in D0: Byte0 = 0x4F
   2 data bytes in D0-D1: Byte0 = 0x4B
   3 data bytes in D0-D2: Byte0 = 0x47
   4 data bytes in D0-D3: Byte0 = 0x43
- Write OD entries: Client → Server, Download Request

| 11 bit identifier       | 8 bytes use | er data  |          |          |          |          |          |          |
|-------------------------|-------------|----------|----------|----------|----------|----------|----------|----------|
| 0x600 (1536d) + Node-ID | 0x2x        | Index LB | Index HB | Subindex | LLB (D0) | LHB (D1) | HLB (D2) | HHB (D3) |

Byte0 (0x2x) gives the number of valid data bytes in D0-D3 and the transfer type and is coded for expedited transfer ( $\leq$  4 data bytes) as follows:

1 data byte in D0: Byte0 = 0x2F
 2 data bytes in D0-D1: Byte0 = 0x2B
 3 data bytes in D0-D2: Byte0 = 0x27
 4 data bytes in D0-D3: Byte0 = 0x23

If it is not necessary to specify the number of data bytes: Byte0 = 0x22

Server → Client, Download Response

| 11 bit identifier       | 8 bytes | user data |          |          |   |   |   |   |
|-------------------------|---------|-----------|----------|----------|---|---|---|---|
| 0x580 (1407d) + node ID | 0x60    | Index LB  | Index HB | Subindex | 0 | 0 | 0 | 0 |



## 4.3 SDO (service data object)

Termination of the SDO protocols in the event of an error:

Client → Server

| 11 bit identifier       | 8 bytes us | er data  |          |          |        |        |        |        |
|-------------------------|------------|----------|----------|----------|--------|--------|--------|--------|
| 0x600 (1536d) + Node-ID | 0x80       | Index LB | Index HB | Subindex | Error0 | Error1 | Error2 | Error3 |

Server → Client

11 bit identifier8 bytes user data0x580 (1408d) + Node-ID0x80Index LBIndex HBSubindexError0Error1Error2Error3

Error3 Error class Error2: Error code

Error1: Additional error code HB Error0: Additional error code LB

| Error class | Error code | Additional code | Description                                                        |
|-------------|------------|-----------------|--------------------------------------------------------------------|
| 0x05        | 0x03       | 0x0000          | Toggle bit unchanged                                               |
| 0x05        | 0x04       | 0x0001          | SDO Command Specifier invalid or unknown                           |
| 0x06        | 0x01       | 0x0000          | Access to this object is not supported                             |
| 0x06        | 0x01       | 0x0002          | Attempt to write on a Read_Only parameter                          |
| 0x06        | 0x02       | 0x0000          | Object does not exist in the object dictionary                     |
| 0x06        | 0x04       | 0x0041          | Object cannot be mapped in PDO                                     |
| 0x06        | 0x04       | 0x0042          | Number and/or length of the mapped objects would exceed PDO length |
| 0x06        | 0x04       | 0x0043          | General parameter incompatibility                                  |
| 0x06        | 0x04       | 0x0047          | General internal error in the device                               |
| 0x06        | 0x06       | 0x0000          | Access cancelled due to hardware fault                             |
| 0x06        | 0x07       | 0x0010          | Data type or parameter length do not match or are unknown          |
| 0x06        | 0x07       | 0x0012          | Data type does not match, parameter length is too large            |
| 0x06        | 0x07       | 0x0013          | Data type does not match, parameter length is too short            |
| 0x06        | 0x09       | 0x0011          | Subindex not available                                             |
| 0x06        | 0x09       | 0x0030          | General value range error                                          |
| 0x06        | 0x09       | 0x0031          | Value range error: Parameter value too large                       |
| 0x06        | 0x09       | 0x0032          | Value range error: Parameter value too small                       |
| 0x06        | 0x0A       | 0x0023          | Resource not available                                             |
| 0x08        | 0x00       | 0x0021          | Access not possible due to local application                       |
| 0x08        | 0x00       | 0x0022          | Access not possible due to current device status                   |



## 4.4 Emergency Object (error message)

The emergency object informs other bus devices of errors that have occurred.

The size of the Emergency Object is always 8 bytes and its structure is as follows:

| 11 bit identifier     | 8 bytes user data                  |   |   |   |   |   |  |
|-----------------------|------------------------------------|---|---|---|---|---|--|
| 0x80 (128d) + Node-ID | Error0 (LB) Error1 (HB) Error reg. | 0 | 0 | 0 | 0 | 0 |  |

The first two bytes contain the 16 bit error code, the third byte contains the error register (content of object 0x1001), bytes 4 and 5 contain the 16 bit FAULHABER error register (content of object 0x2320), the remaining bytes are unused (always 0).

The error register identifies the error type. The individual error types are bit coded and are assigned the respective error codes in the following table. The object 0x1001 can be used to query the last value of the error register.

The following error code table lists all errors reported by emergency message frames, provided the corresponding error is set in the emergency mask for the FAULHABER error register (see <u>Chapter 6.8</u> "<u>Error handling</u>"). Only those errors for which an emergency mask is given in this table are reported.

#### **Emergency Error Codes**

| Error code | Meaning                               | Emergency mask | Error register bit |
|------------|---------------------------------------|----------------|--------------------|
| 0x0000     | no error                              |                |                    |
| 0x1000     | generic error                         |                | 0                  |
| 0x2000     | current                               |                |                    |
| 0x2300     | current, device output side           |                |                    |
| 0x2310     | continuous over current               | 0x0001         | 1                  |
| 0x3000     | voltage                               |                |                    |
| 0x3200     | voltage inside the device             |                |                    |
| 0x3210     | over voltage                          | 0x0004         | 2                  |
| 0x4000     | temperature                           |                |                    |
| 0x4300     | drive temperature                     |                |                    |
| 0x4310     | over temperature                      | 0x0008         | 3                  |
| 0x5000     | device hardware                       |                |                    |
| 0x5500     | data storage                          |                |                    |
| 0x5530     | flash memory error                    | 0x0010         | 5                  |
| 0x6000     | device software                       |                |                    |
| 0x6100     | internal software                     | 0x1000         | 5                  |
| 0x8000     | monitoring                            |                |                    |
| 0x8100     | communication                         |                |                    |
| 0x8130     | life guard error                      | 0x0100         | 4                  |
| 0x8140     | recovered from bus off                | 0x0200         | 4                  |
| 0x8400     | velocity speed controller (deviation) | 0x0002         | 5                  |
| 0x8600     | positioning controller                |                |                    |
| 0x8611     | following error (deviation)           | 0x0002         | 5                  |

### Example:

If 0x2320 is set in the FAULHABER error register under Subindex 2 Bit 1, an emergency message frame with 8 data bytes 0x10 0x23 0x01 0x00 0x00 0x00 0x00 0x00 is sent if the current limitation value set using LCC was exceeded for longer than the error delay time set with DCE.

### **Error Register**

| Bit | Meaning                                    |
|-----|--------------------------------------------|
| 0   | Generic error                              |
| 1   | Current                                    |
| 2   | Voltage                                    |
| 3   | Temperature                                |
| 4   | Communication error (overrun, error state) |
| 5   | Device profile specific                    |
| 6   | Reserved (always 0)                        |

62



## 4.5 SYNC object

The SYNC object is a short message frame without data content, which is used to trigger synchronous PDOs and therefore enables quasi simultaneous starting of processes on different devices.

The identifier of the SYNC object can be set in the object dictionary under Index 0x1005 (Default: 0x80).

| 11 bit identifier | No user data |  |
|-------------------|--------------|--|
| 0x80              |              |  |

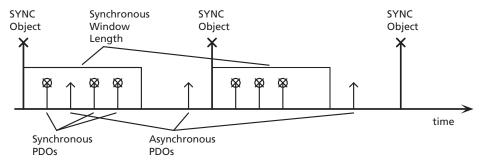
Whether a PDO is to be triggered by a SYNC object or not can be set using the transmission type in the Communication Parameter objects of the corresponding PDO (see <a href="#">Chapter 8.1 "Communication objects according to CiA 301"</a>).

A differentiation is made between the following PDO transmission types:

| <b>Transmission type</b> | Meaning                                                                                                                                                                                                                                          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 255                      | asynchronous (event controlled)                                                                                                                                                                                                                  |
| 253                      | asynchronous, only on request (RTR)                                                                                                                                                                                                              |
|                          |                                                                                                                                                                                                                                                  |
| 252                      | synchronous, only on request (RTR)                                                                                                                                                                                                               |
|                          | PDO is only sent on request following a SYNC object                                                                                                                                                                                              |
| 1 – 240                  | synchronous, cyclical PDO is repeatedly sent following a SYNC object The given value simultaneously represents the number of SYNC objects which have to have been received before the PDO is sent again (1 = PDO is sent with each SYNC object). |
| 0                        | synchronous, acyclic PDO is sent or executed once following a SYNC object, if it has changed its content (new parameter query or status change)                                                                                                  |

#### **Synchronous receive PDO:**

The command transmitted with the PDO is not executed until the SYNC objects is received. In this way, e.g. several axles can be synchronised with each other.


#### NOTE

In the case of RxPDOs, the transmission types 1-240 are identical to transmission type 0.



#### **Synchronous transmit PDO:**

After receiving a SYNC object, the PDO is sent as quickly as possible with the current data (Synchronous Window Length = 0):



NOTE

Transmission types 1-240 can also be used to group nodes.





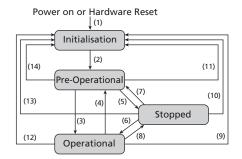
## 4.6 NMT (network management)

After switching on and initialisation has been successfully performed, the FAULHABER Motion Controllers are automatically in the "Pre-Operational" state. Apart from via NMT messages, in this state it is only possible to communicate with the device via service data objects (SDOs), to make or query parameter settings. FAULHABER Motion Controllers are delivered complete with useful default settings for all objects; therefore, in general it is not necessary to assign parameters with the system start. Necessary parameter settings are usually performed once, e.g. with the help of the FAULHABER Motion Manager and are then permanently stored in the data flash. These settings are then immediately available following the system start.

A single CAN message is sufficient to start a CANopen device:

Start Remote Node:

| 11 bit identifier | 2 bytes | er data |  |
|-------------------|---------|---------|--|
| 0x000             | 0x01    | Node-ID |  |


Or, to start the whole network:

Start All Remote Nodes:

| 11 bit identifier | 2 bytes us | ser data |
|-------------------|------------|----------|
| 0x000             | 0x01       | 0x00     |

The devices are then in "Operational" state. The device is now fully functional and can be operated via PDOs.

The state diagram is given in the following:



| (1)              | At Power on the initialisation state is entered autonomously   |
|------------------|----------------------------------------------------------------|
| (2)              | Initialisation finished – enter PRE-OPERA-TIONAL automatically |
| (3), (6)         | Start_Remote_Node indication                                   |
| (4), (7)         | Enter PRE-OPERATIONAL_State indication                         |
| (5), (8)         | Stop_Remote_Node indication                                    |
| (9), (10), (11)  | Reset_Node indication                                          |
| (12), (13), (14) | Reset_Communication indication                                 |

In the "Stopped" ("Prepared") state, the device is in the error state and can no longer be operated using SDO and PDOs. Only NMT messages are received, to cause a state change. State changes can be performed with the help of the NMT services:

An NMT message frame always consists of 2 bytes on the identifier 0x000:

| 11 bit identifier | 2 bytes us | er data |
|-------------------|------------|---------|
| 0x000             | CS         | Node-ID |

CS: Command Specifier

Node-ID: Node address (0 = all nodes)



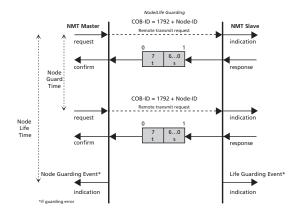
## 4.6 NMT (network management)

The possible values for the Command Specifier CS are listed in the following table:

| State transition | Command Specifier CS | Explanation                                                                                                                 |
|------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| (1)              | _                    | The initialisation status is reached autonomously on switching on.                                                          |
| (2)              | _                    | Following initialisation the pre-operational status is reached automatically, at the same time the boot-up message is sent. |
| (3), (6)         | CS = 0x01 (1d)       | Start_Remote_Node. Starts the device and releases the transmission of PDOs.                                                 |
| (4), (7)         | CS = 0x80 (128d)     | Enter_Pre-Operational. Stops the PDO transmission, SDO continues to be active.                                              |
| (5), (8)         | CS = 0x02 (2d)       | Stop_Remote_Node. Device changes to error state, SDO and PDO are switched off.                                              |
| (9), (10), (11)  | CS = 0x81 (129d)     | Reset_Node. Performs a reset. All objects are reset to power-on defaults.                                                   |
| (12), (13), (14) | CS = 0x82 (130d)     | Reset_Communication. Resets the communication functions.                                                                    |

#### **Boot-Up Message:**

Following the initialisation phase, the FAULHABER Motion Controller sends the Boot-Up Message, a CAN message with one data byte (Byte0 = 0x00) on the identifier of the node guarding message (0x700 + Node ID):


| 11 bit identifier       | 1 bytes user data |
|-------------------------|-------------------|
| 0x700 (1792d) + Node ID | 0x00              |

The boot-up message signals the end of the initialisation phase of a newly activated module, which can then be configured or started.

### Node guarding/life guarding:

The node guarding object can be used to query the momentary state of the device. To do this, by setting a remote frame, the master sends a request (request message frame) on the guarding identifier of the node to be monitored. This then replies with the guarding message, which contains the current status of the node and a toggle bit.

The following diagram describes the node guarding protocol:



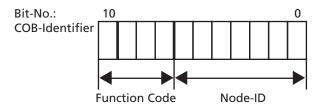
- t: Toggle bit. Initially 0, changes its value in each guarding message frame.
- s: Status:

s = 0x04 (4d): Stopped

s = 0x05 (5d): Operational

s = 0x7F (127d): Pre-operational

If a node life time > 0 is set (objects 0x100C and 0x100D), a life-guarding-error is set, if no more node guarding queries of the master arrive within the given life time (life-guarding).


Alternatively, an incremental encoder can also be used as the position encoder for BL motors in Profile Position mode.



## 4.6 NMT (network management)

#### **Identifier distribution:**

CANopen provides default identifiers in the "predefined connection set" for the most important objects. These are made up of a 7 bit node address (node ID) and a 4 bit function code in accordance with the following schema:



FAULHABER Motion Controller only operate with these default identifiers:

| Object | Function code (binary) | Resulting COB-ID | Communication Parameters at Index |
|--------|------------------------|------------------|-----------------------------------|
| NMT    | 0000                   | 0                | -                                 |
| SYNC   | 0001                   | 128 (80h)        | 1005h                             |

| Object               | Function code (binary) | Resulting COB-ID          | Communication Parameters at Index |
|----------------------|------------------------|---------------------------|-----------------------------------|
| EMERGENCY            | 0001                   | 129 (81h) – 255 (FFh)     | 1014h                             |
| PDO1 (tx)            | 0011                   | 385 (181h) – 511 (1FFh)   | 1800h                             |
| PDO1 (rx)            | 0100                   | 513 (201h) – 639 (27Fh)   | 1400h                             |
| PDO2 (tx)            | 0101                   | 641 (281h) – 767 (2FFh)   | 1801h                             |
| PDO2 (rx)            | 0110                   | 769 (301h) – 895 (37Fh)   | 1401h                             |
| PDO3 (tx)            | 0111                   | 897 (381h) – 1023 (3FFh)  | 1802h                             |
| PDO3 (rx)            | 1000                   | 1025 (401h) – 1151 (47Fh) | 1402h                             |
| SDO (tx)             | 1011                   | 1409 (581h) – 1535 (5FFh) | 1200h                             |
| SDO (rx)             | 1100                   | 1537 (601h) – 1663 (67Fh) | 1200h                             |
| NMT Error<br>Control | 1110                   | 1793 (701h) – 1919 (77Fh) |                                   |

66



## 4.7 Entries in the object dictionary

The configuration parameters are managed in the CANopen object dictionary. The object dictionary is divided into three areas:

- 1. Communication parameters (Index 0x1000 0x1FFF)
- 2. Manufacturer specific area (Index 0x2000 0x5FFF)
- 3. Standardised device profiles (0x6000 0x9FFF)

The 1<sup>st</sup> area contains the objects according to DS301, the 2<sup>nd</sup> area is reserved for manufacturer-specific objects and the 3<sup>rd</sup> area contains the objects according to DSP402 supported by the FAULHABER Motion Controllers.

Each object can be referenced via its index and subindex (SDO protocol).

### Overview of the available objects:

a.) Communication objects according to DS301:

| Index  | Object | Name                                       | Туре           | Attribute |
|--------|--------|--------------------------------------------|----------------|-----------|
| 0x1000 | VAR    | device type                                | UNSIGNED32     | ro        |
| 0x1001 | VAR    | error register                             | UNSIGNED8      | ro        |
| 0x1003 | ARRAY  | pre-defined error field                    | UNSIGNED32     | rw        |
| 0x1005 | VAR    | COB-ID SYNC                                | Unsigned32     | rw        |
| 0x1008 | VAR    | manufacturer device name                   | Vis-String     | const     |
| 0x1009 | VAR    | manufacturer hardware version              | Vis-String     | const     |
| 0x100A | VAR    | manufacturer software version              | Vis-String     | const     |
| 0x100C | VAR    | guard time                                 | UNSIGNED16     | rw        |
| 0x100D | VAR    | life time factor                           | UNSIGNED8      | rw        |
| 0x1010 | ARRAY  | store parameters                           | UNSIGNED32     | rw        |
| 0x1011 | ARRAY  | restore default parameters                 | UNSIGNED32     | rw        |
| 0x1014 | VAR    | COB-ID EMCY                                | UNSIGNED32     | ro        |
| 0x1018 | RECORD | identity object                            | Identity (23h) | ro        |
|        |        | Server SDO Parameter                       |                |           |
| 0x1200 | RECORD | 1st server SDO parameter SDO               | SDOParameter   | ro        |
|        |        | Receive PDO Communication Parameter        |                |           |
| 0x1400 | RECORD | 1st receive PDO parameter PDO              | PDOCommPar     | rw        |
| 0x1401 | RECORD | 2 <sup>nd</sup> receive PDO parameter PDO  | PDOCommPar     | rw        |
| 0x1402 | RECORD | 3 <sup>rd</sup> receive PDO Parameter PDO  | PDOCommPar     | rw        |
|        |        | Receive PDO Mapping Parameter              |                |           |
| 0x1600 | RECORD | 1st receive PDO mapping PDO                | PDOMapping     | ro        |
| 0x1601 | RECORD | 2 <sup>nd</sup> receive PDO mapping PDO    | PDOMapping     | ro        |
| 0x1602 | RECORD | 3 <sup>rd</sup> receive PDO mapping PDO    | PDOMapping     | ro        |
|        |        | Transmit PDO Communication Parameter       |                |           |
| 0x1800 | RECORD | 1st transmit PDO parameter PDO             | PDOCommPar     | rw        |
| 0x1801 | RECORD | 2 <sup>nd</sup> transmit PDO parameter PDO | PDOCommPar     | rw        |
| 0x1802 | RECORD | 3 <sup>rd</sup> transmit PDO parameter PDO | PDOCommPar     | rw        |
|        |        | Transmit PDO Mapping Parameter             |                |           |
| 0x1A00 | RECORD | 1st transmit PDO mapping PDO               | PDOMapping     | ro        |
| 0x1A01 | RECORD | 2 <sup>nd</sup> transmit PDO mapping PDO   | PDOMapping     | ro        |
| 0x1A02 | RECORD | 3 <sup>rd</sup> transmit PDO mapping PDO   | PDOMapping     | ro        |
|        |        |                                            |                |           |



## 4.7 Entries in the object dictionary

b.) Drive profile objects according to DSP402:

| Index  | Name                           | Туре             | Attribute | Meaning                            |
|--------|--------------------------------|------------------|-----------|------------------------------------|
| 0x6040 | controlword                    | Unsigned16       | rw        | Drive control                      |
| 0x6041 | statusword                     | Unsigned16       | ro        | Status display                     |
| 0x6060 | modes of operation             | Integer8         | wo        | Operating mode changeover          |
| 0x6061 | modes of operation display     | Integer8         | ro        | Set operating mode                 |
| 0x6062 | position demand value          | Integer32        | ro        | Last target position scaled        |
| 0x6063 | position actual value          | Integer32        | ro        | Actual position in increments      |
| 0x6064 | position actual value          | Integer32        | ro        | Actual position scaled             |
| 0x6067 | position window                | Unsigned32       | rw        | Target position window             |
| 0x6068 | position window time           | Unsigned16       | rw        | Time in target position window     |
| 0x6069 | velocity actual sensor value   | Integer32        | ro        | Current speed value                |
| 0x606B | velocity demand value          | Integer32        | ro        | Target velocity                    |
| 0x606C | velocity actual value          | Integer32        | ro        | Current speed value                |
| 0x606D | velocity window                | Unsigned16       | rw        | End speed window                   |
| 0x606E | velocity window time           | Unsigned16       | rw        | Time in end speed window           |
| 0x606F | velocity threshold             | Unsigned16       | rw        | Speed threshold value              |
| 0x6070 | velocity threshold time        | Unsigned16       | rw        | Time below speed threshold value   |
| 0x607A | target position                | Integer32        | rw        | Target position                    |
| 0x607C | homing offset                  | Integer32        | rw        | Reference point offset             |
| 0x607D | software position limit        | ARRAY Integer32  | rw        | Area limits                        |
| 0x607E | polarity                       | Unsigned8        | rw        | Polarity (direction of rotation)   |
| 0x607F | max profile velocity           | Unsigned32       | rw        | Maximum speed                      |
| 0x6081 | profile velocity               | unsigned32       | rw        | Maximum speed                      |
| 0x6083 | profile acceleration           | Unsigned32       | rw        | Acceleration value                 |
| 0x6084 | profile deceleration           | Unsigned32       | rw        | Braking ramp value                 |
| 0x6085 | quick stop deceleration        | Unsigned32       | rw        | Quick stop braking ramp value      |
| 0x6086 | motion profile type            | Integer16        | ro        | Motion profile                     |
| 0x608F | position encoder resolution    | ARRAY Unsigned32 | rw        | Resolution of the external encoder |
| 0x6093 | position factor                | ARRAY Unsigned32 | rw        | Position factor                    |
| 0x6096 | velocity factor                | ARRAY Unsigned32 | rw        | Speed factor                       |
| 0x6097 | acceleration factor            | ARRAY Unsigned32 | rw        | Acceleration factor                |
| 0x6098 | homing method                  | Integer8         | rw        | Homing method                      |
| 0x6099 | homing speed                   | ARRAY Unsigned32 | rw        | Homing speed                       |
| 0x609A | homing acceleration            | Unsigned32       | rw        | Homing acceleration                |
| 0x60F9 | velocity control parameter set | ARRAY Unsigned16 | rw        | Parameters for speed controller    |
| 0x60FA | control effort                 | Integer32        | ro        | Controller output                  |
| 0x60FB | position control parameter set | ARRAY Unsigned16 | rw        | Parameters for position controller |
| 0x60FC | position demand value          | Integer32        | ro        | Last target position in increments |
| 0x60FF | target velocity                | Integer32        | rw        | Target velocity                    |
| 0x6510 | drive data                     | RECORD           | rw        | Drive information                  |
|        |                                |                  |           |                                    |

A detailed description of the individual objects is given in <a href="Chapter 8" Parameter description"">Chapter 8 "Parameter description"</a>.



## **5 Extended CAN functions**

#### 5.1 The FAULHABER channel

A special FAULHABER channel is available on, which can be used to execute all the Motion Controller's commands in a simple way.

A corresponding CAN message frame is available for each FAULHABER command, with which the CAN unit can be operated analogous to the serial version. All the functions and parameters of the drive unit can be activated using this channel.

<u>Chapter 8.4 "FAULHABER commands"</u> contains the complete description of the FAULHABER commands.

#### 5.2 Trace

PDO3 can be used to trace operating data, i.e. to read it out online with a resolution of up to 1 ms. After the required trace type has been set using RxPDO3, the values can be requested consecutively by requests on TxPDO3 (see <a href="Chapter 4.2">Chapter 4.2</a> "PDOs (process data objects)").

#### Trace configurations:

#### RxPDO3:

| Byte | Function                                             |
|------|------------------------------------------------------|
| 0    | Mode for Parameter 1                                 |
| 1    | Mode for Parameter 2                                 |
|      | 255 = No second parameter                            |
| 2    | Transmission with time code                          |
|      | 1 = with time code                                   |
|      | 0 = without time code                                |
| 3    | Number of data packets to be transmitted per request |
|      | Default: 1                                           |
| 4    | Time interval between packets [ms]                   |
|      | Default: 1                                           |

The following values are available for Parameter 1 and 2:

- 0: Actual velocity [Integer16, mm/s]
- 1: Target velocity [Integer16, mm/s]
- 2: Controller output [Integer16]
- 4: Motor current [Integer16, mA]
- 44: Housing temperature [Unsigned16, °C]
- 46: Coil temperature [Unsigned16, °C]
- 200: Current position [Integer32, Inc]
- 201: Target position [Integer32, Inc]

### Data request:

Depending on the mode set for Parameter 1 and 2, following a request (RTR) on TxPDO3, 3 to 8 bytes are returned on TxPDO3:

1.) Mode 1 between 0 and 15, Mode 2 at 255 (inactive)

→ 3 byte ... 1<sup>st</sup> byte: Low byte data 2<sup>nd</sup> byte: High byte data 3<sup>rd</sup> byte: Timer code

The data are in Integer16 format.



## **5 Extended CAN functions**

### 5.2 Trace

2.) Mode 1 between 16 and 199, Mode 2 at 255 (inactive)

→ 3 bytes ... Coding as for 1.)

The data are in Unsigned16 format.

3.) Mode 1 between 200 and 255, Mode 2 at 255 (inactive)

→ 5 byte ... 1st byte: Lowest byte data

2<sup>nd</sup> byte: Second byte data 3<sup>rd</sup> byte: Third byte data 4<sup>th</sup> byte. Highest byte data

5<sup>th</sup> byte: Time code

The data are in Integer32 format.

4.) Mode1 corresponding to 1.), 2.) or 3.) and Mode 2 less than 255:

→ 5 to 8 bytes ... Byte 1 to 2 (4): Data bytes of Mode1
Byte 3 (5) to 4 (6) (8): Data bytes of Mode2

Byte 5 (7): Time code

The data bytes of Mode2 are coded as for Mode1.

The time code corresponds to a multiple of the time basis of 1 ms and defines the time interval to the last transmission. If two Integer32 parameters are requested, there is no more space for the time code in the CAN message frame; configuration parameter 2 must therefore be set to 0 (transmission without time code). The time must then be measured in the master.

## **NOTE**



The trace data can also be read out using a SYNC object instead of via RTR. To do this, the transmission type of TxPDO3 in object 0x1802 must be set to a synchronous transmission type (see <u>Chapter 4.5 "SYNC object"</u>). In this way, data can be simultaneously read out from several nodes.

## Example:

Record the actual position and motor current of node 1.

a.) Set trace configuration

Transmit ID 401: C8 04 01 01 01

b.) Data request

Request ID 381

c.) Answer

Byte 7:

Receive ID 381: 10 27 00 00 32 00 03

→ Byte 1 to 4: Position 10 000

Byte 5 to 6: Motor current 50 mA

Further data can be requested by means of renewed requests on ID 381.

Timecode 3 ms

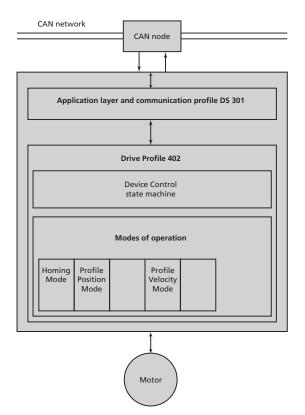


# **6 Functional description of the CANopen CiA 402**

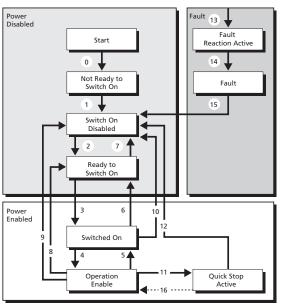
| Guide                                               |         |
|-----------------------------------------------------|---------|
| Device Control                                      | Page 72 |
| Profile Position Mode and Position Control Function | Page 79 |
| Homing Mode                                         | Page 84 |
| Profile Velocity Mode                               | Page 88 |
| Drive parameters/Common entries                     | Page 91 |
| Inputs/Outputs                                      | Page 92 |
| Error handling                                      | Page 94 |
|                                                     |         |

The CANopen device profile for drives and Motion Control applications (CiA 402) of the CANopen user organisation CAN in Automation (CiA) is based on the general CANopen protocol description CiA 301 as described in Chapter 4.

Communication with the drive takes place via the mechanisms described there. Before the drive can be addressed the baud rate must be set and a node number assigned to the CAN node. In addition, the underlying CANopen node must be activated using the network management (NMT) (see <a href="Chapter 4.6">Chapter 4.6</a> "NMT (network management)").




# 6 Functional description of the CANopen CiA 402


#### 6.1 Device Control

FAULHABER Motion Control systems support "Device Control" from the CiA 402 profile and the "Profile Position Mode", "Profile Velocity Mode" and "Homing Mode" operating modes.

#### 6.1.1 State machine of the drive



The drive behaviour is mapped in CANopen via a state machine. The states can be controlled with the controlword and displayed with the statusword:



After switching on and the initialisation has been successfully performed, the FAULHABER drive is immediately in "Switch On Disabled" state. At the same time, transitions 0 and 1 are run through autonomously.

A change in state within the state machine of the drive according to CiA 402 cannot be made until the underlying CANopen node is in the "Operational" state (see <a href="Chapter 4.6" NMT (network management)")</a>.

The "Shutdown" command places the drive in "Ready to Switch On" state (transition 2).

The "Switch On" command then switches on the power stage. The drive is now enabled and is in "Switched On" state (transition 3).

The "Enable Operation" command places the drive in "Operation Enabled" state, the drive's normal operating mode (transition 4). The "Disable Operation" command places the drive back in "Switched On" state and is used, e.g. to terminate a running operation (transition 5).



## **6.1 Device Control**

The state changes shown in the diagram are executed by the following commands:

| Command           | Transitions  |
|-------------------|--------------|
| Shutdown          | 2, 6, 8      |
| Switch on         | 3            |
| Disable Voltage   | 7, 9, 10, 12 |
| Quick Stop        | 7, 10, 11    |
| Disable Operation | 5            |
| Enable Operation  | 4, 16        |
| Fault Reset       | 15           |

## Controlword (0x6040)

The commands for executing state changes are executed by a combining bits 0-3 in the controlword. The controlword is located in the object dictionary under Index 0x6040 and is usually transmitted with PDO1.

| Index  | Subindex | Name        | Туре       | Attrb. | Default value | Meaning       |
|--------|----------|-------------|------------|--------|---------------|---------------|
| 0x6040 | 0        | controlword | Unsigned16 | rw     | 0             | Drive control |

The bits in the controlword have the following meaning:

| Bit | Function                             | Comr      | nands fo  | or Device (        | Contro     | l State Ma           | chine               |             |
|-----|--------------------------------------|-----------|-----------|--------------------|------------|----------------------|---------------------|-------------|
|     |                                      | shut-down | Switch on | Disable<br>Voltage | Quick Stop | Disable<br>Operation | Enable<br>Operation | Fault Reset |
| 0   | Switch on                            | 0         | 1         | X                  | Χ          | 1                    | 1                   | X           |
| 1   | Enable Voltage                       | 1         | 1         | 0                  | 1          | 1                    | 1                   | X           |
| 2   | Quick Stop                           | 1         | 1         | Χ                  | 0          | 1                    | 1                   | Χ           |
| 3   | Enable Operation                     | Χ         | 0         | X                  | Χ          | 0                    | 1                   | X           |
| 4   | New set-point/Homing operation start |           |           |                    |            |                      |                     |             |
| 5   | Change set immediately               |           |           |                    |            |                      |                     |             |
| 6   | abs/rel                              |           |           |                    |            |                      |                     |             |
| 7   | Fault reset                          |           |           |                    |            |                      |                     | 0->1        |
| 8   | Halt                                 |           |           |                    |            |                      |                     |             |
| 9   | 0                                    |           |           |                    |            |                      |                     |             |
| 10  | 0                                    |           |           |                    |            |                      |                     |             |
| 11  | 0                                    |           |           |                    |            |                      |                     |             |
| 12  | 0                                    |           |           |                    |            |                      |                     |             |
| 13  | 0                                    |           |           |                    |            |                      |                     |             |
| 14  | 0                                    |           |           |                    |            |                      |                     |             |
| 15  | 0                                    |           |           |                    |            |                      |                     |             |

Meaning of the other bits in the controlword:

| Function               | Description                                                                                                          |
|------------------------|----------------------------------------------------------------------------------------------------------------------|
| New set-point          | 0: No new target position specified 1: New target position specified                                                 |
| Change set immediately | 0: Start new positioning when current positioning has finished. 1: Interrupt current positioning and start a new one |
| abs/rel                | 0: Target position is an absolute value<br>1: Target position is a relative value                                    |
| Fault reset            | 0->1: Reset fault                                                                                                    |
| Halt                   | 0: Movement can be made<br>1: Stop drive                                                                             |

The command sequences for starting a positioning, a speed control operation or a homing sequence are explained in the following sections.



# **6.1 Device Control**

#### **Example**

Step sequence of the transitions in order to set a drive in Enable Operation state:

#### 1. Shutdown:

Controlword = 0x0006

#### 2. Switch on:

Controlword = 0x0007

The drive is then in "Switched On" status. Operation must then be released to enable drive commands to be executed:

#### 3. Enable Operation:

Controlword = 0x00 OF

The drive is then in "Operation Enabled" state, in which it can be operated using the relevant objects of the set operating mode.

### **Example**

Step sequence of the transitions to get a drive from the error state:

#### 1. Fault reset:

Controlword = 0x0080

#### 2. Shutdown:

Controlword = 0x0006

## 3. Switch on:

Controlword = 0x0007

The drive is then in "Switched On" status. Operation must then be released to enable drive commands to be executed:

#### 4. Enable Operation:

Controlword = 0x00 0F

The drive is then in "Operation Enabled" state, in which it can be operated using the relevant objects of the set operating mode.



## 6.1 Device Control

### Statusword (0x6041)

The current state of the drive is displayed in bits 0 – 6 of the statusword. In the event of state changes, the FAULHABER Motion Controller in its default setting automatically sends the current statusword on PDO1. The current state can also be queried at any time using a remote request on PDO1. The statusword is located in the object dictionary under Index 0x6041.

| Index  | Sub-<br>index |            | Туре       | Attrb. | Default<br>value | Meaning        |
|--------|---------------|------------|------------|--------|------------------|----------------|
| 0x6041 | 0             | statusword | Unsigned16 | ro     | 0                | Status display |

The bits of the statusword have the following meaning:

| Bit | Function                                         | State of                     | the Devi              | ce Contro             | l State M      | achine               |                      |                       |       |
|-----|--------------------------------------------------|------------------------------|-----------------------|-----------------------|----------------|----------------------|----------------------|-----------------------|-------|
|     |                                                  | Not Ready<br>to Switch<br>On | Switch On<br>Disabled | Ready to<br>Switch On | Switched<br>On | Operation<br>Enabled | Quick stop<br>active | Fault reaction active | Fault |
| 0   | Ready to Switch On                               | 0                            | 0                     | 1                     | 1              | 1                    | 1                    | 1                     | 0     |
| 1   | Switched On                                      | 0                            | 0                     | 0                     | 1              | 1                    | 1                    | 1                     | 0     |
| 2   | Operation Enabled                                | 0                            | 0                     | 0                     | 0              | 1                    | 1                    | 1                     | 0     |
| 3   | Fault                                            | 0                            | 0                     | 0                     | 0              | 0                    | 0                    | 1                     | 1     |
| 4   | Voltage Enabled                                  | Χ                            | Χ                     | Χ                     | Χ              | Χ                    | Χ                    | Χ                     | X     |
| 5   | Quick Stop                                       | Χ                            | Χ                     | 1                     | 1              | 1                    | 0                    | Χ                     | X     |
| 6   | Switch On Disabled                               | 0                            | 1                     | 0                     | 0              | 0                    | 0                    | 0                     | 0     |
| 7   | Warning                                          |                              |                       |                       |                |                      |                      |                       |       |
| 8   | 0                                                |                              |                       |                       |                |                      |                      |                       |       |
| 9   | Remote                                           |                              |                       |                       |                |                      |                      |                       |       |
| 10  | Target Reached                                   |                              |                       |                       |                |                      |                      |                       |       |
| 11  | Internal limit active                            |                              |                       |                       |                |                      |                      |                       |       |
| 12  | Set-point acknowl-<br>edge/Speed/Homing attained |                              |                       |                       |                |                      |                      |                       |       |
| 13  | Homing Error                                     |                              |                       |                       |                |                      |                      |                       |       |
| 14  | Hard Notify                                      |                              |                       |                       |                |                      |                      |                       |       |
| 15  | 0                                                |                              |                       |                       |                |                      |                      |                       |       |

Meaning of the other bits in the statusword:

| Function              | Description                                                                                                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warning               | not used                                                                                                                                                                     |
| Remote                | not used                                                                                                                                                                     |
| Target Reached        | <ul><li>0: Target position or target velocity not yet reached</li><li>1: Target position or target velocity reached.</li><li>(Halt = 1: Drive has reached speed 0)</li></ul> |
| Set-point acknowledge | 0: New target position not yet adopted (Profile Position Mode) 1: New target position adopted                                                                                |
| Homing attained       | 0: Homing sequence not yet completed 1: Homing sequence successfully completed                                                                                               |
| Speed                 | 0: Speed not equal to 0 (Profile Velocity Mode)<br>1: Speed 0                                                                                                                |
| Homing Error          | 0: No error<br>1: Error                                                                                                                                                      |
| Hard Notify           | 0: No limit switch has switched<br>1: A notify switch has switched<br>(see Object 0x2311 for which input has switched)                                                       |

Bit 10 (Target Reached) is set if the drive has reached its target position in Profile Position Mode or has reached its target velocity in Profile Velocity Mode. Specification of a new target value deletes the hit

Bit 11 (Internal Limit active) indicates that a internal range limit has been reached.

Bit 12 (Setpoint acknowledge/Speed) is set after receiving a new positioning command (control word with new setpoint) and is reset when the target position is reached or the new setpoint has been reset in the control word (handshake for positioning command). In Profile Velocity Mode the bit is set at velocity 0.



# **6.1 Device Control**

# 6.1.2 Selection of the operating mode

The Modes of Operation parameter is used to select the active drive profile, the Modes of Operation Display entry can be used to read back the current mode of operation.

#### Modes of Operation (0x6060)

| Index  | Sub-<br>index |                    | Туре     | Attrb. | Default<br>value | Meaning                   |
|--------|---------------|--------------------|----------|--------|------------------|---------------------------|
| 0x6060 | 0             | modes of operation | Integer8 | wo     | 1                | Operating mode changeover |

FAULHABER Motion Control systems support the following operating modes:

1 CiA 402 Profile Position Mode (position control)

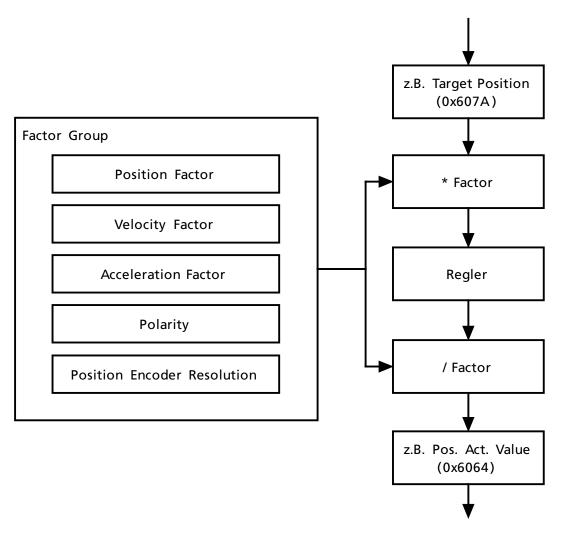
3 CiA 402 Profile Velocity Mode (velocity control)

6 CiA 402 Homing Mode (homing)

-1 FAULHABER specific operating mode

The operating modes according to CiA 402 are described in the following sections. The operating modes of the FAULHABER-specific mode of operation are described in <a href="Chapter 3" Operation in FAULHABER mode">Chapter 3 "Operation in FAULHABER mode"</a>.

## Modes of Operation Display (0x6061)


| Index  | Sub-<br>index |                            | Туре     | Attrb. | Default<br>value | Meaning                           |
|--------|---------------|----------------------------|----------|--------|------------------|-----------------------------------|
| 0x6061 | 0             | modes of operation display | Integer8 | ro     | 1                | Display of the set operating mode |

The set operating mode can be queried here, the meaning of the return values corresponds to the values of the object 0x6060.



## 6.2 Factor Group

Effects of the factor group on the set-point and actual values of the controller



The objects of this area are used to convert between internal variables and user-defined physical variables. The effective factors are each determined via a quotient:

FAULHABER Motion Control systems support the conversion of the position, the velocity and acceleration at the interface in user-defined variables.



# 6.2 Factor Group

### Position Factor (0x6093)

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value | Meaning                                      |
|--------|---------------|-------------------|------------|--------|------------------|----------------------------------------------|
| 0x6093 | 0             | number of entries | Unsigned8  | ro     | 2                | Number of object entries                     |
|        | 1             | numerator         | Unsigned32 | rw     | 1                | Numerator of the position factor             |
|        | 2             | feed_constant     | Unsigned32 | rw     | 1                | Denominator (divisor) of the position factor |

The position factor can be used to set the required position unit for the profile position mode. Internally, the encoder resolution or the resolution of the analog hall signals of BL motors without encoder are used.

## **Velocity Factor (0x6096)**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value | Meaning                                      |
|--------|---------------|-------------------|------------|--------|------------------|----------------------------------------------|
| 0x6096 | 0             | number of entries | Unsigned8  | ro     | 2                | Number of object entries                     |
|        | 1             | numerator         | Unsigned32 | rw     | 1                | Numerator of the velocity factor             |
|        | 2             | divisor           | Unsigned32 | rw     | 1                | Denominator (divisor) of the velocity factor |

The required velocity unit can be set using the velocity factor. Internally, the velocity is used in mm/s.

### **Acceleration Factor (0x6097)**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value | Meaning                                          |
|--------|---------------|-------------------|------------|--------|------------------|--------------------------------------------------|
| 0x6097 | 0             | number of entries | Unsigned8  | ro     | 2                | Number of object entries                         |
|        | 1             | numerator         | Unsigned32 | rw     | 1                | Numerator of the acceleration factor             |
|        | 2             | divisor           | Unsigned32 | rw     | 1                | Denominator (Divisor) of the acceleration factor |

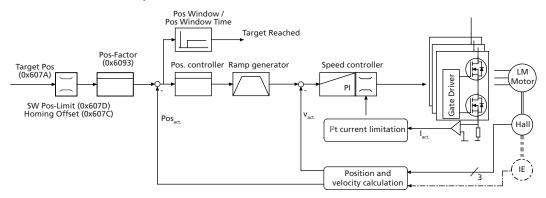
The required acceleration unit can be set using the acceleration factor. Internally, accelerations are displayed in  $1/s^2$ .

## Polarity (0x607E)

| Index  | Sub-<br>index |          | Туре      | Attrb. | Default<br>value | Meaning               |
|--------|---------------|----------|-----------|--------|------------------|-----------------------|
| 0x607E | 0             | polarity | Unsigned8 | rw     | 0                | Direction of rotation |
|        |               | , ,      | _         |        |                  |                       |

The entries in this object can be used to change the direction of rotation of the connected encoder for the supported operating modes:

Bit 7 = 1 → negative direction of rotation in positioning mode


Bit 6 = 1 → negative direction of rotation in velocity mode

78



#### 6.3 Profile Position Mode and Position Control Function

#### Controller structure for position control in Profile Position Mode



In this operating mode the target position and the controller settings are specified by the entries in the object dictionary.

## Operating mode overview

In profile position mode the drive is positioned in the transferred target position.

In order for the drive to be operated in profile position mode, this operating mode must be set in the modes of operation parameter (0x6060). In addition, the drive must be in operation enabled state via its state machine.

In general, after switching on a homing sequence must be performed via homing mode in order to reset the position value to zero at the homing limit switch (see <u>Chapter 6.4 "Homing Mode"</u>).

A position setpoint value is specified via the target position object (0x607A). The positioning process is started by a change from 0 to 1 of bit 4 (New setpoint in the controlword). Bit 6 in the controlword can be used to additionally specify whether the setpoint value is to be interpreted in absolute or relative terms.

Operation in profile position mode requires correctly set velocity and position controllers.

In addition to the setpoint value, the software position limit object (0x607D) can be used to specify range limits for the movement range.

The set maximum values for acceleration, deceleration ramp and speed are additionally taken into account.

# Notification of the higher level control

Attainment of the target position is signalled by bit 10 "target reached" in the statusword of the drive. If the transmission type for the particular PDO is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.

## **Software Position Limit (0x607D)**

| Index  |       | Name               | Туре      | Attrb. | Default                | Meaning                       |
|--------|-------|--------------------|-----------|--------|------------------------|-------------------------------|
|        | index |                    |           |        | value                  |                               |
| 0x607D | 0     | number of entries  | Unsigned8 | ro     | 2                      | Number of object entries      |
|        | 1     | min position limit | Integer32 | rw     | -1.8 · 10 <sup>9</sup> | Lower positioning range limit |
|        | 2     | max position limit | Integer32 | rw     | +1.8 · 109             | Upper positioning range limit |

The positioning range limits are specified in the units defined by the user and are converted in the internal display using the position factor.



## 6.3 Profile Position Mode and Position Control Function

### Position Control ParameterSet (0x60FB)

| Index    | Sub-<br>index | Name                                  | Туре            | Attrb. | Default<br>value | Meaning                    |
|----------|---------------|---------------------------------------|-----------------|--------|------------------|----------------------------|
| 0x60FB   | 0             | number of entries                     | Unsigned16      | ro     | 2                | Number of object entries   |
|          | 1             | Proportional term PP                  | Unsigned16      | rw     | *)               | Position controller P term |
|          | 2             | Derivative term PD                    | Unsigned16      | rw     | *)               | Position controller D term |
|          |               |                                       |                 |        |                  |                            |
| *)Depend | dent or       | n the factory configuration of the Mo | otion Controlle | r      |                  |                            |

#### Position Window (0x6067)

| Index  | Sub-<br>index |                 | Туре       | Attrb. | Default<br>value | Meaning                |
|--------|---------------|-----------------|------------|--------|------------------|------------------------|
| 0x6067 | 0             | position window | Unsigned32 | rw     | 20               | Target position window |

Symmetrical area around the target position, which is used for the "Target Reached" message. It is specified in user-defined units, according to the given Position Factor.

#### Position Window Time (0x6068)

| Index  | Sub-<br>index |                      | Туре       | Attrb. | Default<br>value | Meaning                        |
|--------|---------------|----------------------|------------|--------|------------------|--------------------------------|
| 0x6068 | 0             | position window time | Unsigned16 | rw     | 200              | Time in target position window |

If the drive stays within the range of the Position Window for at least the time set here in milliseconds, bit 10 is set in the statusword (Target Reached).

#### **Query current values / Position Control Function**

The last target position can be read back in internal units using the Position Demand Value object on Index 0x60FC and in user-defined units using the entry on Index 0x6062.

The current position can be read back in internal units using the Position Actual Value object on Index 0x6063 and in user-defined units using Index 0x6064. The description of the objects is given in Chapter 8.3 "Drive profile objects according to CiA 402".

## Additional settings

#### Incremental encoder as position sensor

By default, the position for BL motors is evaluated using the analog hall sensors with a resolution of 3 000 increments per magnetic pitch. Alternatively, an incremental encoder can also be used as the position encoder for BL motors in Profile Position mode. To do this, the drive must be configured in ENCMOD. This can be done in FAULHABER mode using the FAULHABER commands on PDO2 or using the Motion Manager. Following the initial configuration, the Profile Position Mode can be selected.

### Ramp generator

The output of the position controller is additionally limited by a ramp generator to the permissible acceleration and deceleration values and the maximum speed.

A trapezoidal profile with linear speed ramps only is supported. This setting can be read out in the Motion Profile Type object (0x6086).



## 6.3 Profile Position Mode and Position Control Function

## Profile Velocity (0x6081) and Max Profile Velocity (0x607F)

| Index  | Sub-<br>index | Name                 | Туре       | Attrb. | Default<br>value | Meaning       |
|--------|---------------|----------------------|------------|--------|------------------|---------------|
| 0x6081 | 0             | profile velocity     | Unsigned32 | rw     | *)               | Maximum speed |
| 0x607F | 0             | max profile velocity | Unsigned32 | rw     | *)               | Maximum speed |

<sup>\*)</sup> Dependent on the factory configuration of the Motion Controller

Maximum velocity during positioning. It is specified in user-defined units, according to the given velocity factor. Both objects describe the same internal parameter.

### Profile Acceleration (0x6083)

| Index  | Sub-<br>index |                      | Туре       | Attrb. | Default<br>value | Meaning              |
|--------|---------------|----------------------|------------|--------|------------------|----------------------|
| 0x6083 | 0             | profile acceleration | Unsigned32 | rw     | 30 000.          | Maximum acceleration |

It is specified in user-defined units, according to the given acceleration factor.

#### Profile Deceleration (0x6084)

| Index  | Sub-<br>index |                      | Туре       | Attrb. | Default<br>value | Meaning       |
|--------|---------------|----------------------|------------|--------|------------------|---------------|
| 0x6084 | 0             | profile deceleration | Unsigned32 | rw     | 30 000.          | Maximum delay |

## **Quick Stop Decelaration (0x6085)**

| Index  | Sub-<br>index |                            | Туре       | Attrb. | Default<br>value | Meaning                           |
|--------|---------------|----------------------------|------------|--------|------------------|-----------------------------------|
| 0x6085 | 0             | quick stop<br>deceleration | Unsigned32 | rw     | 30 000           | Braking ramp value for Quick Stop |

The acceleration values are specified in user-defined units, according to the value of the given acceleration factor.

### Velocity controller / current limitation

The controller parameters of the secondary velocity controller can also be adjusted. In addition, the current limitation values LPC and LCC made available by the FAULHABER channel (PDO2) or the Motion Manager can be used to protect the drive against overload (see <a href="Chapter 6.5" (Profile Velocity Mode")">Chapter 6.5 "Profile Velocity Mode"</a>).



## 6.3 Profile Position Mode and Position Control Function

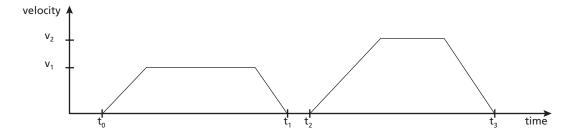
#### Motion control commands

A position set-point is specified using the Target Position object (0x607A). The positioning process is started using bit 4 in the controlword. Bit 6 in the controlword can also be used to additionally specify whether the set-point should be interpreted as being absolute or relative.

#### Target Position (0x607A)

| Index  | Sub-<br>index |                 | Туре      | Attrb. | Default<br>value | Meaning         |
|--------|---------------|-----------------|-----------|--------|------------------|-----------------|
| 0x607A | 0             | target position | Integer32 | rw     | 0                | Target position |

The target position is specified in the units defined by the user and is converted in the internal display using the position factor.


Adoption of a new target position is acknowledged by the drive via the statusword with set bit 12 (acknowledge setpoint). The drive signals that the target position has been reached via the statusvalue with set bit 10 (target reached). "Target Reached" remains set until new positioning is started or the output stage is switched off.

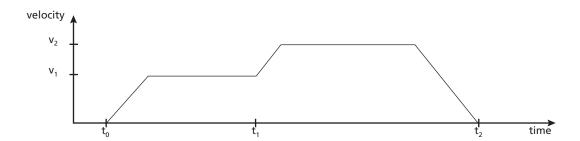
If a new setpoint value is specified during positioning (new setpoint), this is accepted immediately and the drive moves to the new target position. In this way, motion profiles can be run through continuously without having to decelerate the drive to velocity 0 in between times.

### Individual positioning sequence:

Prerequisite: NMT state "Operational", drive state "Operation Enabled" and modes of operation (0x6060) set to Profile Position Mode (1).

- 1. Set Target Position (0x607A) to the required value.
- 2. In the Controlword, set Bit 4 (New Setpoint) to "1" and set Bit 6 (abs / rel) depending on whether absolute or relative positioning is required.
- 3. The drive responds with Bit 12 (Setpoint Acknowledge) set in the Statusword and starts the positioning.
- 4. The drive signals that the target position has been reached via the status value with set bit 10 (target reached). A new positioning job can now be started (New Setpoint).






## 6.3 Profile Position Mode and Position Control Function

## Procedure for a sequence of set-points:

Prerequisite: NMT state "Operational", drive state "Operation Enabled" and modes of operation (0x6060) set to Profile Position Mode (1).

- 1. Set Target Position (0x607A) to the required value.
- 2. In the Controlword, set Bit 4 (New Setpoint) to "1" and set Bit 6 (abs / rel) depending on whether absolute or relative positioning is required.
- 3. The drive responds with Bit 12 (Setpoint Acknowledge) set in the Statusword and starts the positioning.
- 4. A new positioning job can already be started now (New Setpoint), with relative positioning the new target position is added to the last target position. The drive then moves immediately to the new target position.
- 5. The end of the movement sequence is signalled by the Statusword with set Bit 10 (Target reached).





## 6.4 Homing Mode

The objects within this range are available for homing mode. In general, after switching on a homing sequence must be performed to reset the position value at the homing limit switch. Object 0x2310 can be used to set which inputs are to be used as homing limit switches (see <a href="Chapter 8.2">Chapter 8.2</a> "Manufacturer-specific objects").

#### **Homing Offset**

| Index  | Sub-<br>index | Name          | Туре      | Attrb. | Default<br>value | Meaning                                             |
|--------|---------------|---------------|-----------|--------|------------------|-----------------------------------------------------|
| 0x607C | 0             | homing offset | Integer32 | rw     | 0                | Zero point displacement from the reference position |

#### **Homing Method**

| Index  | Sub-<br>index |               | Туре     | Attrb. | Default<br>value | Meaning       |
|--------|---------------|---------------|----------|--------|------------------|---------------|
| 0x6098 | 0             | homing method | Integer8 | rw     | 0                | Homing method |

All homing methods defined in DSP402 V2 are supported:

1 to 14: Homing with index pulse (if available)

17 to 30: Homing without index pulse

33, 34: Homing at index pulse (if available)35: Homing at the current position

## **HINWEIS**



Endschalter begrenzen den Bewegungsbereich (Negative/Positive Limit Switch), können aber auch gleichzeitig als Referenzschalter für die Null-Position verwendet werden. Ein Homing-Schalter ist ein eigener Referenzschalter für die Null-Position.

### Method 1 and 17

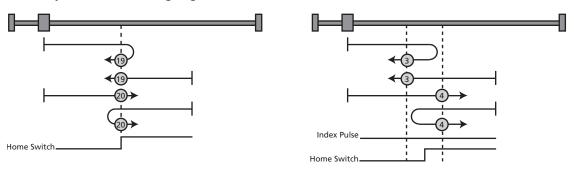
Homing at the lower limit switch (Negative Limit Switch)

If the limit switch is inactive, the drive moves in the direction of the lower limit switch first, until its positive edge has been detected. If the limit switch is active, the drive moves upward out of the limit switch until the negative edge has been detected. With Method 1, the drive then continues moving on the next index pulse at which the home position is set.

#### Method 2 and 18

Homing at the upper limit switch (Positive Limit Switch)

If the limit switch is inactive, the drive moves in the direction of the upper limit switch first, until its positive edge has been detected. If the limit switch is active, the drive moves downward out of the limit switch until the negative edge has been detected. With Method 2, the drive then continues moving on the next index pulse at which the home position is set.




## 6.4 Homing Mode

#### Method 3, 4 and 19, 20

Homing at a positive Homing switch (Positive Home Switch)

Depending on the state of the homing switch, the drive moves in one direction or the other up to the falling (3, 19) or rising (4, 20) edge. There is only one rising edge of the homing switch in the direction of the upper limit switch. The FAULHABER HP parameter for the limit switch used is simultaneously set to 1 here (rising edge).



#### Method 5, 6 and 21, 22

Homing at a negative Homing switch (Negative Home Switch)

Depending on the state of the homing switch, the drive moves in one direction or the other up to the falling (5, 21) or rising (6, 22) edge. There is only one falling edge of the homing switch in the direction of the upper limit switch. The FAULHABER HP parameter for the limit switch used is simultaneously set to 0 here (falling edge).

### Method 7 to 14 and 23 to 30

Homing at Homing switch (Home Switch)

These methods use a limit switch which is only active within a defined path range. A differentiation is made between the response to the two edges.

With Methods 7 to 14, after the edge has been detected, the drive continues moving up to the index pulse at which the homing position is then set.

Method 7 and 23 Homing at bottom of falling edge.

Start in positive direction, if switch inactive





# 6.4 Homing Mode

Method 8 and 24 Homing at bottom of rising edge.

Start in positive direction, if switch inactive.

Method 9 and 25 Homing at top of rising edge.

Always start in positive direction.

Method 10 and 26 Homing at top of falling edge.

Always start in positive direction.

Method 11 and 27 Homing at top of falling edge.

Start in negative direction, if switch inactive.

Method 12 and 28 Homing at top of rising edge.

Start in negative direction, if switch inactive.

Method 13 and 29 Homing at bottom of rising edge.

Always start in negative direction.

Method 14 and 30 Homing at bottom of falling edge.

Always start in negative direction.

Method 33 and 34 Homing at the index pulse

Drive moves in negative (33) or positive (34) direction up to the index pulse.

**Method 35** The position counter is reset at the current position.

## **HINWEIS**



Limit switches and homing switches are approached in velocity mode, an index pulse in positioning mode. At the same time the set range limits (0x607D) are taken into account.



# 6.4 Homing Mode

## **Homing Speed**

| Index  | Sub-<br>index |                                | Туре       | Attrb. | Default<br>value | Meaning                        |
|--------|---------------|--------------------------------|------------|--------|------------------|--------------------------------|
| 0x6099 | 0             | number of entries              | Unsigned8  | ro     | 2                | Number of object entries       |
|        | 1             | speed during search for switch | Unsigned32 | rw     | 400              | Speed during search for switch |
|        | 2             | speed during search for home   | Unsigned32 | rw     | 100              | Speed during search for zero   |

The specifications are given in user-defined units, according to the given velocity factor.

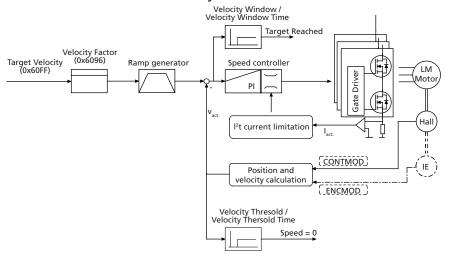
#### **Homing Acceleration**

| Index  | Sub-<br>index |                     | Туре       | Attrb. | Default<br>value | Meaning                    |
|--------|---------------|---------------------|------------|--------|------------------|----------------------------|
| 0x609A | 0             | homing acceleration | Unsigned32 | rw     | 50               | Acceleration during homing |

It is specified in user-defined units, according to the given acceleration factor.

## Procedure for a homing sequence:

Prerequisite: NMT state "Operational", drive state "Operation Enabled" and modes of operation (0x6060) set to Homing Mode (6).


- 1. Set Homing Limit Switch (0x2310), Homing Method (0x6098), Homing Speed (0x6099) and Homing Acceleration (0x609A) to the required value.
- 2. In the controlword, set Bit 4 (Homing operation start) to "1", to start the homing sequence.
- 3. The drive responds with Bit 12 (Homing attained) set in the statusword when the homing sequence is finished. If an error occurs during the homing sequence, Bit 13 (Homing Error) is set in the statusword.

An on-going homing sequence can be interrupted by writing a "0" on Bit 4 in the controlword.



## 6.5 Profile Velocity Mode

#### Controller structure in Profile Velocity Mode



## Operating mode overview

In the profile velocity mode the speed of the drive is controlled by a PI controller. This ensures that the drive is operated without deviation from the specified values, provided it is not overloaded.

In order for the drive to be operated in profile velocity mode, this operating mode must be set in the modes of operation parameter (0x6060). In addition, the drive must be in operation enabled state via its state machine.

The target velocity is set via the target velocity object (0x60FF) in the object dictionary. In profile velocity mode the drive directly follows each new transferred setpoint value. At the same time, the set maximum values for acceleration, deceleration ramp and speed are also taken into account.

## Notification of the higher level control

Attainment of the target velocity is signalled by bit 10 "target reached" in the statusword of the drive. A stopped drive is signalled via bit 12 "Speed = 0". If the transmission type for the particular PDO is set to 255, the PDO is transmitted asynchronously, triggered by the change in state.

Operation in profile velocity mode requires a velocity controller correctly adjusted to the application.



# 6.5 Profile Velocity Mode

### **Basic settings**

The Velocity Control Parameter Set object (0x60F9) can be used to set the proportional amplification and the I term for the position controller.

#### **Velocity Control Parameter Set (0x60F9)**

| Index                                                              | Sub-<br>index | Name                      | Туре       | Attrb. | Default<br>value | Meaning                  |
|--------------------------------------------------------------------|---------------|---------------------------|------------|--------|------------------|--------------------------|
| 0x60F9                                                             | 0             | number of entries         | Unsigned8  | ro     | 2                | Number of object entries |
|                                                                    | 1             | gain                      | Unsigned16 | rw     | *)               | P term                   |
|                                                                    | 2             | integration time constant | Unsigned16 | rw     | *)               | I term                   |
|                                                                    |               |                           |            |        |                  |                          |
| *) Dependent on the factory configuration of the Motion Controller |               |                           |            |        |                  |                          |

The sampling rate can be set between 1 and 20 as a multiple of the internal sampling rate using the SR command. The internal sampling rate is 0.2 ms.

## **Actual velocity value**

In BL motors the current velocity is determined by evaluating the analog hall sensor signals. The ECN-MOD can also be configured for BL motors using the Motion Manager or the ENCMOD command via the FAULHABER channel on PDO2.

In DC motors, the velocity is determined using the incremental encoder.

The resolution of the encoder is configured using the Position Encoder Resolution object (0x608F) (see <u>Chapter 6.2 "Factor Group"</u>).



## 6.5 Profile Velocity Mode

## **Additional settings**

### Ramp generator

After specifying a new target speed using the Target Velocity object (0x60FF), the drive is accelerated or braked to the new speed in the Profile Velocity Mode using the acceleration deposited in the Profile Acceleration object (0x6083). The parameter is valid in both directions!

#### **Current limitation**

The parameter LPC (allowable peak current) and LCC (allowable continuous current) can be used to protect the drive against overload. The parameters can be set using the configuration dialogue of the Motion Manager or the FAULHABER commands LPC and LCC via PDO2.

### **Motion control commands**

A velocity set-point is specified using the Target Velocity object (0x60FF). Provided the drive is in Operation Enable state (see <u>Chapter 6.1 "Device Control"</u>), the drive is accelerated directly to the new target velocity.

The Parameter Velocity Window (0x606D) is used to define a window around the target velocity, within which the target velocity is signalled as being reached, if the velocity remains within the target window for at least the time in using the parameter Velocity Window Time (0x606E).

The attained target velocity is signalled in the statusword by bit 10 "Target Reached".

The Parameter Velocity Threshold (0x606F) is used to define a threshold value for the velocity, below which the drive is signalled as being at a standstill, if the velocity remains below the threshold value for at least the time defined using the parameter and Velocity Threshold Time (0x6070).

Stoppage is signalled in the statusword by bit 12 "Speed=0".

#### Target Velocity (0x60FF)

| Index  | Sub-<br>index |                 | Туре      | Attrb. | Default<br>value | Meaning         |
|--------|---------------|-----------------|-----------|--------|------------------|-----------------|
| 0x60FF | 0             | target velocity | Integer32 | rw     | 20               | Target velocity |

The target velocity is specified in the units defined by the user and is converted in the internal display (1/min) using the velocity factor.

The last set target velocity can be queried in user-defined units using the Velocity Demand Value object (0x606B).

The current velocity value can be queried using the Velocity sensor actual value (0x6069) or Velocity actual value (0x606C) objects, each in user-defined units.

The description of the objects is given in Chapter 8.3 "Drive profile objects according to CiA 402".

#### **Complex motion profiles**

Evaluation of bits 10 "Target Reached" and 12 "Speed = 0" in the statusword can be used to deliberately shut down specific velocity profiles. The acceleration is defined using the Profile Acceleration object.

90



# 6.6 Drive parameters / Common entries

Basic properties of the drive system are stored in the encoder and motor type objects.

## Drive Data (0x6510)

The velocity constant and the motor resistance are required as parameters for the motor monitoring models. These values are suitably preassigned for external controls by selecting a motor type in the Motion Manager's Motor Wizard.

| Index  | Sub-<br>index | Name                | Туре       | Attrb. | Default<br>value | Meaning                                     |
|--------|---------------|---------------------|------------|--------|------------------|---------------------------------------------|
| 0x6510 | 0             | number of entries   | Unsigned8  | ro     | 3                | Number of object entries                    |
|        | 1             | motor type          | Signed32   | ro     | *)               | Set motor type<br>0 LM motor                |
|        | 2             | speed constant KN   | Unsigned16 | rw     | *)               | Speed constant Kn of the motor Unit: mm/s/V |
|        | 3             | motor resistance RM | Unsigned32 | rw     | *)               | Motor resistance RM Unit: $m\Omega$         |

<sup>\*)</sup> Dependent on the factory configuration of the Motion Controller

## Position Encoder Resolution (0x608F)

If the linear Hall sensors of the brushless motors are used as position transducers, 3 000 pulses per magnetic pitch are supplied. If using an incremental sensor as position sensor, its resolution must be set using the Position Encoder Resolution object.

| Index  | Sub-  | Name               | Туре       | Attrb. | Default | Meaning                                                              |
|--------|-------|--------------------|------------|--------|---------|----------------------------------------------------------------------|
|        | index |                    |            |        | value   |                                                                      |
| 0x608F | 0     | number of entries  | Unsigned8  | ro     | 2       | Number of entries                                                    |
|        | 1     | encoder increments | Unsigned32 | rw     | 2 048   | Resolution of the external encoder for 4 edge evaluation             |
|        | 2     | motor revolution   | Unsigned32 | rw     | 1       | Number of magnetic pitches with the pulse number named in subindex 1 |



# 6.7 Inputs/Outputs

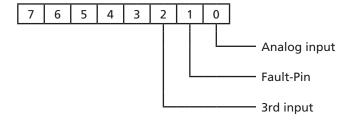
The connections described in <u>Chapter 3.3 "Homing and limit switches"</u> are available. <u>Chapter 3.3.1 "Limit switch connections and switching level"</u> describes configuration of the switching level. <u>Chapter 3.5 "Special fault output functions"</u> describes the special function of the fault pin.

### Limit switch and homing switch setting

The available digital inputs can each be configured as limit switches or homing switches for use within a DSP402 homing method. The upper and lower limit switches are additionally used as range limit switches, beyond which the drive cannot move (hard blocking).

If lower and upper limit switches are not used for a DSP402 homing method, their switch polarity can be defined using the switch polarity parameter (rising or falling edge valid). By default, homing methods 1, 2, 17 and 18 assume a positively switching limit switch. If, on the other hand, a negative switching limit switch is to be used the required polarity must be set here accordingly and in addition the polarity parameter for the homing limit must be set to 1.

#### **HINWEIS**




The input configuration cannot be changed in homing mode. For this you must switch to profile position or profile velocity mode!

#### Limit switch setting

| Index  |       | Name                      | Туре      | Attrb. | Default | Meaning                                                              |
|--------|-------|---------------------------|-----------|--------|---------|----------------------------------------------------------------------|
|        | index |                           |           |        | value   |                                                                      |
| 0x2310 | 0     | Number of entries         | Unsigned8 | ro     | 6       | Number of object entries                                             |
|        | 1     | Negative limit switch     | Unsigned8 | rw     | 0       | Lower limit switch                                                   |
|        | 2     | Positive limit switch     | Unsigned8 | rw     | 0       | Upper limit switch                                                   |
|        | 3     | Homing switch             | Unsigned8 | rw     | 0x07    | Homing switch                                                        |
|        | 4     | Notify switch             | Unsigned8 | rw     | 0       | Notify switch                                                        |
|        | 5     | Switch polarity           | Unsigned8 | rw     | 0x07    | Polarity of the switches<br>1: Pos. edge valid<br>0: Neg. Edge valid |
|        | 6     | Polarity for homing limit | Unsigned8 | rw     | 0       | 1: Use the polarity of the switches in DSP402 Homing Mode too        |

The function of the digital inputs can be set here in accordance with the following bit mask:





## 6.7 Inputs/Outputs

## **Explanation**

Subindex 1 (negative limit):

Here the input is given, at which the lower limit switch for homing methods 1 and 17 or for a hard blocking function is connected.

If the limit switch is activated the drive is stopped and can now only be moved back out of the limit switch in the opposite direction (Hard Blocking).

■ Subindex 2 (positive limit):

Here the input is given, at which the upper limit switch for homing methods 2 and 18 or for a hard blocking function is connected.

If the limit switch is activated the drive is stopped and can now only be moved back out of the limit switch in the opposite direction (Hard Blocking).

■ Subindex 3 (homing):

Here the input is given, at which the homing switch for homing methods 3 to 14 and 19 to 30 is connected. Polarity and notify (subindex 5 and 4) cannot be used here.

Subindex 4 (notify):

Here the input is given, at which a notify switch is connected, which reports with the status word and set bit 14, if it has been activated. Object index 0x2311 can then be used to query which switch has switched. This function cannot be used simultaneously with a homing method. The object's setting is not saved, as soon as a switch has been activated the value is reset.

■ Subindex 5 (polarity):

The polarity of the notify switch and the hard blocking limit switch can be set here. If the polarity is to be changed with homing methods 1, 2, 17 and 18 too, subindex 6 must be set to 1 beforehand.

■ Subindex 6 (DSP402 polarity):

Here it is possible to give whether the polarity settings under subindex 5 are to be used for the homing methods 1, 2, 17 and 18. In general, the setting can only be set for all inputs (no bitmask coding).

For a description of the homing methods, see <a href="Chapter 6.4">Chapter 6.4 "Homing Mode"</a>.

The settings of this object simultaneously change the settings of the FAULHABER parameters HB, HD, HA, HN and HP!

# **Notify switch**

| Index  | Sub-<br>index |                  | Туре      | Attrb. | Default<br>value | Meaning           |
|--------|---------------|------------------|-----------|--------|------------------|-------------------|
| 0x2311 |               | triggered switch | Unsigned8 | ro     | 0                | Switched switches |

This object can be used to query which switch switched according to the above bit mask if a statusword message with set bit 14 has arrived. Reading the object resets bit 14 in the statusword.



# 6.8 Error handling

### **FAULHABER Fault Register**

| Index  | Sub-<br>index | Name                    | Туре       | Attrb. | Default<br>value | Meaning                                                                              |
|--------|---------------|-------------------------|------------|--------|------------------|--------------------------------------------------------------------------------------|
| 0x2320 | 0             | number of entries       | Unsigned8  | ro     | 4                | Number of object entries                                                             |
|        | 1             | internal fault register | Unsigned16 | ro     | 0                | Current internal fault 0 = No fault                                                  |
|        | 2             | emergency mask          | Unsigned16 | rw     | 0x00FF           | Faults which trigger an emergency message frame                                      |
|        | 3             | fault mask              | Unsigned16 | rw     | 0                | Faults which are treated as DSP402 faults and affect the state machine (fault state) |
|        | 4             | errout mask             | Unsigned16 | rw     | 0x00FF           | Faults which set the error output                                                    |

This object describes how internal faults are treated.

The errors are coded as follows and can be masked by adding the required error types:

| Error-Bit | Error                         | Beschreibung                                      |
|-----------|-------------------------------|---------------------------------------------------|
| 0x0001    | Continuous over current       | Set continuous current limiting exceeded          |
| 0x0002    | Deviation                     | Set maximum allowable velocity deviation exceeded |
| 0x0004    | Over voltage                  | Overvoltage detected                              |
| 0x0008    | Over temperature              | Maximum coil or MOSFET temperature exceeded       |
| 0x0010    | Flash memory error            | Memory error                                      |
| 0x0100    | Life guard or heartbeat error | CAN monitoring error                              |
| 0x0200    | Recovered from bus off        | Exit CAN bus error "Bus off"                      |
| 0x1000    | Internal software             | Internal software error                           |

## **NOTE**



Set SubIndex 3 of Object 0x2320 to 1, to switch off the drive in the event of overcurrent and place it in error status. A value of 0x0101 switches the drive off even if a CAN error exists.

### NOIE



Set SubIndex 4 of Object 0x2320 to 0, if the error output (Fault Pin) is not to display errors or to 0xFFFF, if all errors (including CAN errors) are to be displayed.

See also <u>Chapter 3.5 "Special fault output functions"</u> for further information on the error types and <u>Chapter 4.4 "Emergency Object (error message)"</u> for the coding of the emergency error codes.

### **Set Baud Rate**

| 0v2400 0 Paud rate Unsigned to 0vEE Set hand rate   | Index  | Sub-<br>index |           | Туре      | Attrb. | Default<br>value | Meaning       |
|-----------------------------------------------------|--------|---------------|-----------|-----------|--------|------------------|---------------|
| 0x2400 0 Badd rate Offsigneds to 0xFF Set badd rate | 0x2400 | 0             | Baud rate | Unsigned8 | ro     | 0xFF             | Set baud rate |

This object can be used to query which baud rate is set. The index of the set baud rate is returned or 0xFF, if AutoBaud is set.

| Baud rate  | Index |
|------------|-------|
| 1 000 kBit | 0     |
| 800 kBit   | 1     |
| 500 kBit   | 2     |
| 250 kBit   | 3     |
|            |       |

| Baud rate | Index |
|-----------|-------|
| 125 kBit  | 4     |
| 50 kBit   | 6     |
| 20 kBit   | 7     |
| 10 kBit   | 8     |
| AutoBaud  | 0xFF  |



| Guide                                                 |          |  |  |
|-------------------------------------------------------|----------|--|--|
| duide                                                 |          |  |  |
| Node number and baud rate                             | Page 95  |  |  |
| Basic settings                                        | Page 97  |  |  |
| Configuration using the Motion Manager                | Page 98  |  |  |
| Configuration in FAULHABER mode                       | Page 102 |  |  |
| Configuration in a drive profile according to CIA 402 | Page 110 |  |  |
| Data set management                                   | Page 117 |  |  |
| Diagnosis                                             | Page 118 |  |  |
|                                                       |          |  |  |

The drive unit must be connected to a PC via a CAN adapter or a host control with CANopen interface in order to make the basic settings for commissioning.

## NOTE



Connection of the CAN interface is described in the technical manual. For the communication setup, ensure that the same transfer rate is set for all nodes (see <u>Chapter 2.1 "Set node number and baud rate"</u>) and the terminating resistances are used!

FAULHABER Motion Manager provides a convenient device configuration option using graphic dialogues.

The configuration can also be carried out using your own programming or other CANopen configuration tools.

## 7.1 Node number and baud rate

The node address and transfer rate are set using the network in accordance with the LSS protocol according to CiA DSP305 V1.1 (Layer Setting Services and Protocol).

A configuration tool which supports the LSS protocol is therefore required for the setting, e.g. FAUL-HABER Motion Manager.

The configuration tool is the LSS Master, and the drives act as LSS Slaves.

LSS Slaves can be configured in two ways:

- 1. "Switch Mode Global" switches all connected LSS Slaves to configuration mode. However, only one LSS Slave may be connected to set the baud rate and Node-ID.
- "Switch Mode Selective" switches precisely one LSS Slave in the network to configuration mode. For this, the Vendor ID, Product code, Revision number and Serial number of the node to be addressed must be known.



## 7.1 Node number and baud rate

The following baud rates (Bit Timing Parameters) can be set:

| Baud rate    | Index |  |
|--------------|-------|--|
| 1 000 kBit/s | 0     |  |
| 800 kBit/s   | 1     |  |
| 500 kBit/s   | 2     |  |
| 250 kBit/s   | 3     |  |
| 125 kBit/s   | 4     |  |
| 50 kBit/s    | 6     |  |
| 20 kBit/s    | 7     |  |
| 10 kBit/s    | 8     |  |

In addition, Index 0xFF can be used to activate automatic baud rate detection.

The following node numbers can be set:

1 - 127.

Node-ID 255 (0xFF) indicates that the node has not yet been configured, which causes the node to retain in LSS-Init status after it is switched on until a valid node number is transferred to it. Only then is the NMT initialisation continued.

The LSS protocol also supports the reading of of LSS addresses, consisting of the Vendor ID, Product code, Revision Number and Serial number of connected units and reading out of the set Node-ID.

Identifiers 0x7E5 (from the Master) and 0x7E4 (from the Slave), on which the protocol is worked through, are used for LSS communication.

Following configuration, the set parameters are backed up in the Flash memory, so that they are available again after switching off and on.

FAULHABER controllers use Vendor ID, Product code and Serial number only to activate the "Switch Mode Selective". 0.0 can always be transferred for the revision number, as this value is ignored in the protocol.

Vendor ID: 327 Product code: 3 150

Please refer to the CiA document DSP 305 for a detailed description of the LSS protocol.

If automatic baud rate detection is activated, the drive can be used in a network with any transmission rate in accordance with the table above and after 3 message frames on the bus line at the latests, the baud rate of the network is detected and the drive has adjusted itself to it. Here it must be noted that the initial message frames cannot be processed and booting takes a little longer.



## 7.2 Basic settings

In the case of external motion controllers, several basic settings have to be made during the initial start-up to adjust the controller to the connected motor.

### **CAUTION!**

#### Risk of destruction!



Failure to observe these basic settings can result in destruction of components!

▶ The basic settings described in the following must be noted and observed

The following basic settings must be made for external motion controllers:

- Motor type or motor data (KN, RM, TM) of the connected motor
- Resolution of an external encoder (ENCRES), if used
- Current limitation values (LCC, LPC), adjusted to the motor type and application
- Controller parameters (POR, I, PP, PD), adjusted to the motor type and application

In addition, FAULHABER Motion Manager can be used to synchronise the Hall sensor signals for smooth start-up.

The configuration must then be adjusted to the respective application. In particular, the following basic settings are important:

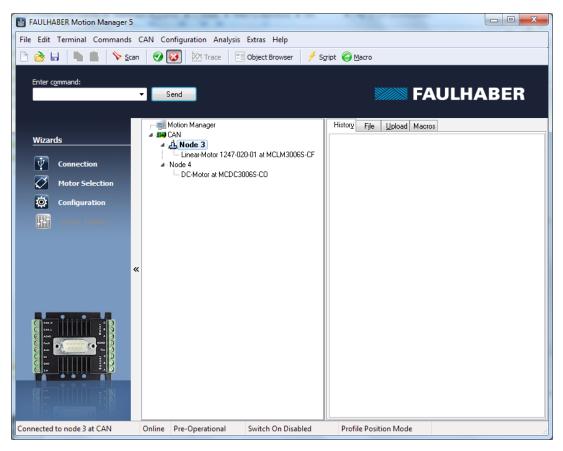
- Operating Mode
- Current limiting values
- Controller parameters
- Function of the digital inputs/outputs

## Warning!

### Risk of destruction



If using the Fault Pin as input (REFIN, DIRIN), the desired function must be programmed before applying external voltage!


Configuration of these parameters with the help of the FAULHABER Motion Manager is explained in greater detail in the following chapter.



## 7.3 Configuration using the Motion Manager

"FAULHABER Motion Manager" PC software provides a simple option for configuring the drive unit and for performing initial tests and optimisation.

The software is available for Microsoft Windows and can be downloaded free of charge from the FAULHABER internet site: <a href="https://www.faulhaber.com">www.faulhaber.com</a>.



Motion controllers with a connected linear motor must be equipped with current limitation values suitable for the motor and suitable controller parameters before being started up.

The motor selection Wizard is available for selecting the motor and the suitable basic parameters. Other settings, e.g. for the function of the fault pin, can be made under the "configuration – drive functions" menu item, where a convenient dialog is provided (<a href="Chapter 7.3.3" "Drive configuration"">Chapter 7.3.3 "Drive configuration"</a>). The configuration dialog is also available for direct access in the wizard bar of the Motion Manager.

A tuning wizard, with which the controller parameters of the speed and positioning controller can be adjusted to the application, is also provided.



# 7.3 Configuration using the Motion Manager

## 7.3.1 Connection setting

If no drive nodes are found when the Motion Manager is started, a connection wizard appears. In the first step, the "Motion Controller with CAN-interface" product group must be selected. The connection wizard can also be started at any time via the wizard bar.

#### Connection wizard (Step 1: Selection of the controller)



In the second step, the CAN interface used and, if applicable, the baud rate can be set. Information on the supported CAN interfaces is given in the instruction manual of the Motion Manager or you can contact FAULHABER for information.

The interface found by the driver must then be explicitly adopted again as a once-off action.

### Connection wizard (Step 2: Selection of Interface)



Devices which are already set to a baud rate are then found by the Motion Manager and are displayed in the Node Explorer.

Devices which have not yet been configured can be assigned a node number and baud rate in a further step.



# 7.3 Configuration using the Motion Manager

#### 7.3.2 Motor selection

External motion controllers must be adjusted to the connected motor.

The Motor Wizard is provided for this purpose; it can be opened via the Wizard bar of the Motion Manager.

After selecting the required FAULHABER motor from a list and setting the sensor type used, as well as entering an inertia factor for the load to be operated, in addition to the motor and current limiting values, suitable controller parameters are also determined and transferred to the drive.

Refer to the Motion Manager instruction manual for details of how to use the Motor Wizard.

## 7.3.3 Drive configuration

The Motor Wizard has already set sensible default settings for the motor/sensor combination selected.

A configuration dialog with several pages for further drive configuration and adjustment to the required application is available in the Motion Manager's Wizard bar or under the menu item: "Configuration – Drive functions...".

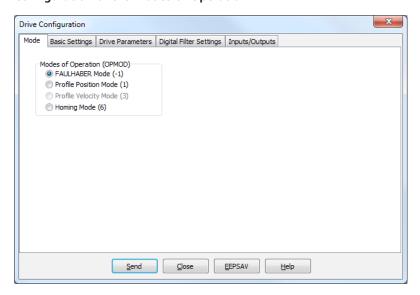
### **NOTE**



The CAN node must be in OPERATIONAL state (see <u>Chapter 4 "CANopen protocol description"</u>) in order to configure the drives.

The node can be started using the context menu in the NodeExplorer: "CANopen Network Management-Start Remote Node".

No settings are transferred to the drive until the "Send" button is pressed. The current state of the drive is also read back and the dialog is updated accordingly. Invalid combinations of settings are corrected at the same time, as they are not accepted by the drive.


The settings are permanently saved in the drive using the "EEPSAV" button.



# 7.3 Configuration using the Motion Manager

# 7.3.4 Selection of the operating mode

**Configuration of the Modes of Operation** 



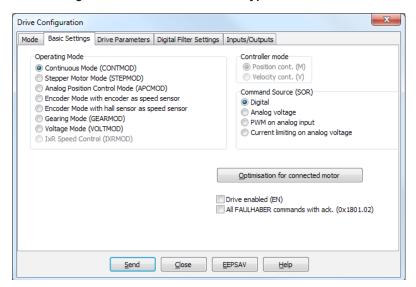
The basic operating mode must be selected using the "Modes of Operation" or OPMOD on the first page of the configuration dialogue. FAULHABER Mode with the scope of functions described in <a href="Chapter 3" Operation in FAULHABER mode"">Chapter 3 "Operation in FAULHABER mode"</a> and the drive profiles described in the <a href="Chapter 6" Functional description of the CANopen CiA 402"</a> are available.



# 7.4 Configuration in FAULHABER mode

## 7.4.1 Basic settings

Within the scope of the commissioning,


- the operating mode
- and the type of set-point presetting (command source) are set in the Basic Settings tab:

## **NOTE**

The "Basic settings" dialog page is only shown in FAULHABER mode.



#### Basic settings for the motor and encoder type





# 7.4 Configuration in FAULHABER mode

#### **Encoder type and optimisation**

If an incremental encoder attached to the motor is to be evaluated its effective resolution must be given for 4 edge evaluation. If using the internal encoder, no further inputs are necessary.

A button, with which the Optimisation Wizard can be started, is available for adjusting the Hall sensor signals to the connected motor.

#### NOTE

Ensure that the cage bar can freely move before starting the encoder optimisation.



## **Controller mode**

FAULHABER motion controllers support both main types of operation

- Position control as servo drive.
- Velocity control

The controller mode is partly automatically selected depending on the chosen operating mode.

#### Operating mode

In addition to the controller mode, variations of the operation can also be selected.

The following options are available:

#### **CONTMOD**

Default setting for the selected controller mode.

The actual speed and actual position are determined in CONTMOD via the motor's Hall sensors.

CONTMOD for position control: see <a href="Chapter 3.1.1">Chapter 3.1.1 "Set-point presetting via CAN/PDO2"</a>

CONTMOD for velocity control: see Chapter 3.2.1 "Target velocity via CAN/PDO2"

#### **STEPMOD**

Position control

The target position is derived from the number of steps at the AnIn input.

STEPMOD see Chapter 3.4.1 "Stepper motor mode"

#### **APCMOD**

Position control

The target position is preset by an analog voltage at the AnIn input.

APCMOD see Chapter 3.1.2 "Analog positioning mode (APCMOD)"

#### **ENCMOD** with ENCSPEED

Position control with evaluation of an external encoder, including for the actual velocity.

ENCMOD for position control: see <u>Chapter 3.1.3 "External encoder as actual position value (ENC-MOD)"</u>.



# 7.4 Configuration in FAULHABER mode

#### **ENCMOD** with HALLSPEED

Position control with evaluation of the Hall signals for the actual velocity

ENCMOD for position control: see <u>Chapter 3.1.3 "External encoder as actual position value (ENC-MOD)"</u>

#### **GEARMOD**

Position control

The target position is determined using the number of steps of an external encoder GEARMOD see <u>Chapter 3.4.2 "Gearing mode (electronic gear)"</u>

#### **VOLTMOD**

Direct presetting of a voltage amplitude at the motor VOLTMOD see <u>Chapter 3.4.3 "Voltage regulator mode"</u>

### **Set-point presetting**

The set-value presetting must be chosen to match the selected type of operation and controller mode.

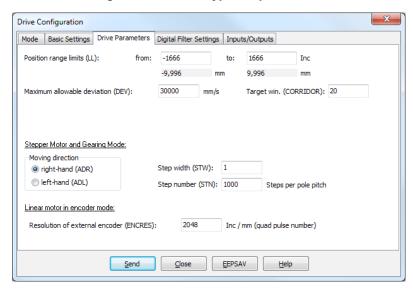
The following are supported:

- Set-point presetting via CAN
- Set-point presetting for position or velocity via an analog voltage
- Set-point presetting for position or velocity via a PWM voltage
- Set-point presetting for the limit current via an analog voltage

## Power-on state

In the default state the drive's power stage is initially inactive after power-on.

The power stage can be activated by selecting the "Drive enabled (EN)" checkbox.




## 7.4 Configuration in FAULHABER mode

## 7.4.2 Drive parameters

The Drive Parameters tab is used to make additional settings for the encoder and chosen type of operation.

#### Additional settings for the chosen type of operation



## **Encoder resolution**

If an incremental encoder attached to the motor is to be evaluated its effective resolution for 4 edge evaluation must be given.

## Set-point presetting in stepper or gearing mode

The conversion of the step number of the external presetting in relation to the magnetic pole pitch must be given for the command source in stepper mode and in gearing mode.

#### **Example:**

At 1 000 pulses of the external encoder or at 1 000 steps, the motor should perform a movement of one magnetic pole pitch:

- STW1
- STN1000

Detailed notes on using these parameters are given in the chapters with the functional description of stepper and gearing mode (<u>Chapter 3.4.1 "Stepper motor mode"</u> and <u>Chapter 3.4.2 "Gearing mode</u> (electronic gear)").

## Velocity presetting via an analog voltage

For presetting a velocity via an analog voltage, a threshold value (MAV) can be preset, from which the target value is evaluated starting with the minimum velocity (MV).

Detailed notes on using these parameters are given in the <u>Chapter 3.2.2 "Velocity presetting via an analog voltage or a PWM signal"</u>.



# 7.4 Configuration in FAULHABER mode

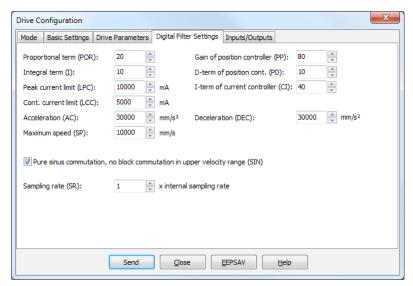
### **Positioning range limits**

In various types of operation the movement range can be monitored and limited. The limits of this movement range can be given in increments of the actual position using the parameter LL Range monitoring is activated by the APL1 command.

#### Maximum allowable velocity deviation and target corridor

The parameter CORRIDOR defines a range around the target position within which the "Target position reached" flag is set. If required, the target position is signalled asynchronously by a notify.

Within this corridor the D term of the position controller is active and the ramp generator is inactive.


The parameter DEV can be used to preset a maximum allowable controller deviation for the velocity controller. If this barrier is exceeded for longer than set using the parameter DCE in the Inputs and Outputs tab, an error is signalled via the fault pin or via a CANopen Emergency Message.

## 7.4.3 Controller settings

The changes to the default set controller and current limitation parameters can be made in the "Controller Parameters" tab of the drive configuration dialog.

In addition, under the "Configuration – Digital Filter Settings..." menu item, there is another dialog in which the parameters can be changed online and the result can be observed directly or can be recorded using the trace function in Motion Manager.

## **Digital Filter Settings**





## 7.4 Configuration in FAULHABER mode

## Voltage output

By default the Motion Controller uses pure sinus commutation. This means the motor runs with the lowest possible losses and noise.

Alternatively, at higher velocities it is possible to also allow overriding of the output signals similar to block commutation. As a result, the whole velocity range of the drive can be used.

### NOTE



On changing between pure sinus commutation and operation with block commutation in the upper velocity range the controller amplification is also increased accordingly.

### Current controller (LCC, LPC, CI)

The parameter LCC can be used to give the thermally allowable continuous current for the application.

Motors and the motion controller can be overloaded within certain limits. Therefore, higher currents can also be allowed for dynamic processes. The maximum current value is given using the parameter LPC.

Depending on the drive's load, the internal current monitoring limits the output current to the peak current (LPC) or the allowable continuous current (LCC).

### **CAUTION!**

#### Risk of destruction!



The thermally allowable continuous current (LCC) should never be given above the thermally allowable continuous current of the motor according to the data sheet.

The maximum peak current (LPC) may never be given above the maximum peak output current of the installed electronics.

The current controller of the motion controller operates as a current limiting controller and therefore in an unlimited case has no effect on the dynamics of the velocity control. The speed of the limitation can be set using the parameter CI. If using the default values for your motor, the current is limited to the allowable value after around 5 ms.

If a FAULHABER motor was selected via the Motor Wizard, parameters are already set here with which the motor can be operated safely.

Further details are given in the Chapter 3.6.3 "Current controller and I2t current limitation".

### Velocity controller (I, POR, SR)

The velocity controller is implemented as a PI controller. The sampling time SR can be set as multiples of the basic sampling rate, the proportional gain POR and the integral component I can be set.

If a FAULHABER motor was selected via the Motor Wizard, parameters are already set here with which the motor can be operated safely.

If the motor is exposed to additional loads, the inertia of the load must be compensated for by a higher proportional term and if necessary slower sampling; in most applications the integral term can remain unchanged.

Further information on setting and adjustment is given in <u>Chapter 3.6.7 "Setting the controller parameters for velocity and position controller"</u>.



## 7.4 Configuration in FAULHABER mode

### Ramp generator (AC, DEC, SP)

The ramp generator limits the velocity change at the input of the velocity controller using the parameters AC and DEC and the maximum preset speed using the parameter SP.

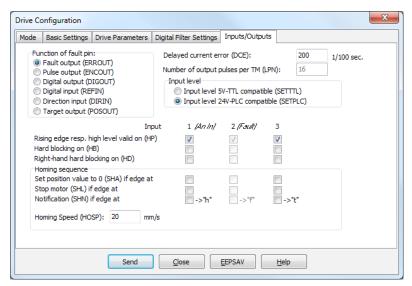
The parameters AC and SP can be freely selected depending on the application; the parameter DEC is used to specify the deceleration behaviour in positioning mode. For large loads, the deceleration ramp must be limited using the parameter DEC to achieve dead beat (overshoot-free) run-in in the target position.

Further information on setting and adjustment is given in Chapter 3.6.1 "Ramp generator".

#### Position controller (PP, PD)

The position controller is implemented as a proportional controller. An additional D term also acts within the target corridor only (see Drive Parameters tab).

The proportional term uses the position deviation in increments to calculate the maximum preset velocity for the underlying velocity controller. The ramp generator is used to additionally limit the acceleration and maximum velocity.


Dead beat run-in in the target position can be preferentially achieved by adjusting the deceleration ramp to the load. For a well-attenuated transient condition in the limit position, the parameter PP must be reduced proportionally to the load inertia.

Further information on setting and adjustment is given in <u>Chapter 3.6.7 "Setting the controller parameters for velocity and position controller"</u>.

## 7.4.4 I/O connection and use

The functions of the digital inputs and outputs and homing can be defined in the "Inputs/Outputs" tab of the drive configuration dialog.

## Configuration of the inputs and outputs





## 7.4 Configuration in FAULHABER mode

#### Input level and edge

The switching thresholds of the digital inputs are either directly 5V TTL compatible or are adjusted to the switching level of 24 V PLC outputs.

In addition, it is also possible to select which level is to be used as the active level for each input and if the input is to be used as a limit switch (HB/HD).

#### Function of the fault pin

The fault pin can be used both as an input and as an output.

#### **CAUTION!**



Do not connect 24V to the fault pin, if the fault pin is configured as a digital output (ERROUT / DIG-OUT / ENCOUT)!

The other settings for the 2<sup>nd</sup> input can only be made if the fault pin is configured as a reference input.

For the default function as a fault output, the parameter DCE can be used to specify a delay time to suppress the response to individual short overcurrent pulses.

For the function as pulse output, the number of pulses per magnetic pitch of the motor can be set using the parameter LPN.

In the POSOUT function the output displays the entry into the target corridor as a digital signal (low means target position is reached).

#### Homing

Use as a reference switch can be set for each of the available inputs.

To this end, either the actual position can be set to 0 by an edge at the selected input (SHA), the motor can be stopped (SHL) or a message can be set to the higher level control (SHN). Notification is given by sending the statusword with bit14 = 1 (Hard Notify) on PDO1. The actions can be combined. Homing defined in this way can be executed using the GOHOSEQ command.



### 7.5 Configuration in a drive profile according to CIA 402

### 7.5.1 Basic settings

NOTE

The "Basic settings" dialog page is only shown in FAULHABER mode.



#### **Encoder type and optimisation**

If an incremental encoder attached to the motor is to be evaluated its effective resolution must be given for 4 edge evaluation. If using the internal encoder, no further inputs are necessary.

A button, with which the Optimisation Wizard can be started, is available for adjusting Hall sensor signals and phase angles to the connected motor for externally connected BL motors with analog Hall sensors.

NOTE

Ensure that the cage bar can freely move before starting the encoder optimisation.

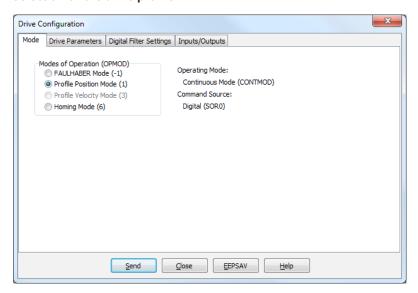


#### **Profile selection**

In the "Mode" tab of the drive configuration you can select one of the CiA 402 drive profiles under "Modes of Operation".

If the drive is to be operated with an incremental encoder as position sensor, you can activate this in the selected profile by entering the ENCMOD command in the command line of the Motion Manager.

NOTE


Save the selected setting via EEPSAV to permanently configure the drive.





## 7.5 Configuration in a drive profile according to CIA 402

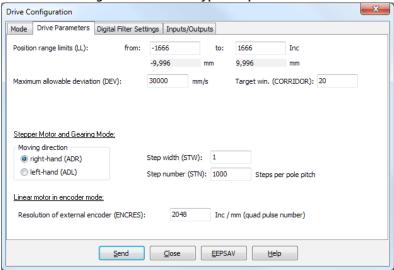
#### Selection of the drive profile



#### **Encoder type and optimisation**

If an incremental encoder attached to the motor is to be evaluated its effective resolution must be given for 4 edge evaluation. If using the internal encoder, no further inputs are necessary.

A button, with which the Optimisation Wizard can be started, is available for adjusting Hall sensor signals and phase angles to the connected motor for externally connected BL motors with analog Hall sensors.




## 7.5 Configuration in a drive profile according to CIA 402

#### 7.5.2 Drive parameters

The "Drive Parameters" tab is used to make additional settings for the encoder and chosen type of operation.

Additional settings for the chosen type of operation



#### **Encoder resolution**

If an incremental encoder attached to the motor is to be evaluated its effective resolution for 4 edge evaluation must be given.

#### **Positioning range limits**

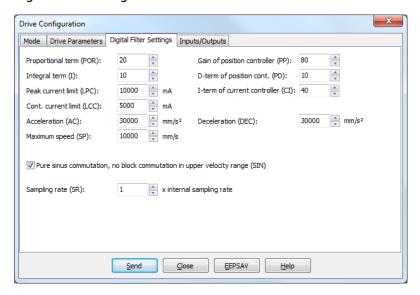
In various types of operation the movement range can be monitored and limited. The limits of this movement range can be given in increments of the actual position using the parameter LL.

#### Maximum allowable velocity deviation and target corridor

The parameter CORRIDOR defines a range around the target position within which the "Target reached" flag is set in the statusword. If transmission type 255 is configured for the TxPDO1 (default setting), the target position is signalled by an asynchronously set PDO. Within this corridor the D term of the position controller is active and the ramp generator is inactive.

The parameter DEV can be used to preset a maximum allowable controller deviation for the velocity controller. If this barrier is exceeded for longer than set using the parameter DCE in the Inputs and Outputs tab, an error is signalled via the fault pin or via a CANopen Emergency Message.




## 7.5 Configuration in a drive profile according to CIA 402

### 7.5.3 Controller setting

The changes to the default set controller and current limitation parameters can be made in the "Digital Filter Settings" tab of the drive configuration dialog.

In addition, under the "Configuration – Digital Filter Settings..." menu item, there is another dialog in which the parameters can be changed online and the result can be observed directly or can be recorded using die trace function in Motion Manager.

#### **Digital Filter Settings**



#### **Voltage output**

By default the motion controller uses pure sinus commutation. This means the motor runs with the lowest possible losses and noise.

Alternatively, at higher velocities it is possible to also allow overriding of the output signals similar to block commutation. As a result, the whole velocity range of the drive can be used.

#### NOTE



On changing between pure sinus commutation and operation with block commutation in the upper velocity range the controller amplification is also increased accordingly.



### 7.5 Configuration in a drive profile according to CIA 402

#### Current controller (LCC, LPC, CI)

The parameter LCC can be used to give the thermally allowable continuous current for the application.

Motors and the motion controller can be overloaded within certain limits. Therefore, higher currents can also be allowed for dynamic processes. The maximum current value is given using the parameter LPC.

Depending on the drive's load, the internal current monitoring limits the output current to the peak current (LPC) or the allowable continuous current (LCC).

#### **CAUTION!**

#### Risk of destruction!



The thermally allowable continuous current (LCC) should never be given above the thermally allowable continuous current of the motor according to the data sheet.

The maximum peak current (LPC) may never be given above the maximum peak output current of the installed electronics.

The current controller of the motion controller operates as a current limiting controller and therefore in an unlimited case has no effect on the dynamics of the velocity control. The speed of the limitation can be set using the parameter CI. If using the default values for your motor, the current is limited to the allowable value after around 5ms.

If a FAULHABER motor was selected on the basic settings page, parameters are already set here with which the motor can be safely operated.

Further details are given in the Chapter 3.6.3 "Current controller and I2t current limitation".

#### Velocity controller (I, POR, SR)

The velocity controller is implemented as a PI controller. The sampling time SR can be set as multiples of the drive's basic sampling rate, the proportional amplification POR and the integral term I.

If a FAULHABER motor was selected on the basic settings page, parameters are already set here with which the motor can be safely operated.

If the motor is exposed to additional loads, the inertia of the load must be compensated for by a higher proportional term and if necessary slower sampling; in most applications the integral term can remain unchanged.

Further information on setting and adjustment is given in <u>Chapter 3.6.7 "Setting the controller parameters for velocity and position controller"</u>.

#### Ramp generator (AC, DEC, SP)

The ramp generator limits the velocity change at the input of the velocity controller using the parameters AC and DEC and the maximum preset speed using the parameter SP.

The parameters AC and SP can be freely selected depending on the application; the parameter DEC is used to specify the deceleration behaviour in positioning mode. For large loads, the deceleration ramp must be limited using the parameter DEC to achieve dead beat (overshoot-free) run-in in the target position.

Further information on setting and adjustment is given in <a href="Chapter 3.6.1">Chapter 3.6.1</a> "Ramp generator".

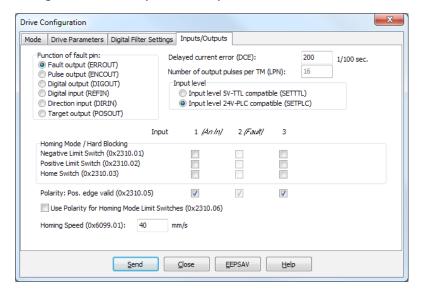


## 7.5 Configuration in a drive profile according to CIA 402

#### Position controller (PP, PD)

The position controller is implemented as a proportional controller. An additional D term also acts within the target corridor only (see Drive Parameters tab).

The proportional term uses the position deviation in increments to calculate the maximum preset velocity for the underlying velocity controller. The ramp generator is used to additionally limit the acceleration and maximum velocity.


Dead beat run-in in the target position can be preferentially achieved by adjusting the deceleration ramp to the load. For a well-attenuated transient condition in the limit position, the parameter PP must be reduced proportionally to the load inertia.

Further information on setting and adjustment is given in <u>Chapter 3.6.7 "Setting the controller parameters for velocity and position controller"</u>.

#### 7.5.4 I/O connection and use

The function of the digital inputs and outputs can be defined in the "Inputs/Outputs" tab of the drive configuration dialogue.

#### Configuration of the inputs and outputs



#### Input level and edge

The switching thresholds of the digital inputs are either directly 5V TTL compatible or are adjusted to the switching level of 24 V PLC outputs.

Precise information on the thresholds is given in the drive's data sheet.



## 7.5 Configuration in a drive profile according to CIA 402

#### Function of the fault pin

The fault pin can be used both as an input and as an output. The basic function can be selected using the radiobuttons.

The other settings for the 2<sup>nd</sup> input can only be made if the fault pin is configured as a reference input.

For the default function as a fault output, the parameter DCE can be used to specify a delay time to suppress the response to individual short overcurrent pulses.

For the function as pulse output, the number of pulses per magnetic pitch can be set using the parameter LPN.



## 7.6 Data set management

#### Save parameters

The settings of a drive can be saved as a backup or as a file for configuration of other drives.

The Motion Manager offers the option of reading out the current drive configuration and saving it as a parameter file.

### Transfer parameters to the drive

Previously saved parameter files can be opened in Motion Manager, edited if necessary and transferred to the drive.

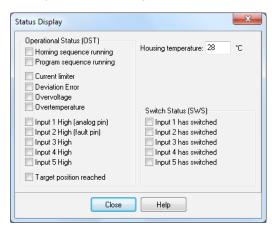
NOTE

Execute the SAVE or EEPSAV command to permanently save a transferred parameter set in the drive.





## 7.7 Diagnosis


### 7.7.1 Status display

The status display is used for continuous checking of the main operating states.

Internal states, error flags and the state of the digital inputs are signalled. In addition, the internally measured housing temperature is also displayed here.

The display is updated by Motion Manager by means of cyclical querying of the internal states.

#### Display of the operating state



#### **Internal states**

Partially autonomous states of the motion controller are displayed. This is the course of homing.

Other internal states are on the one hand the error flag and the housing temperature.

The current limitation flag is set if the maximum current has been set to the continuous current (LCC) by the i²t monitoring.

#### States of digital inputs

The state of the digital inputs is displayed as On or Off depending on the level setting

#### Status of the limit switches

The display indicates whether one of the limit switches has switched, even if the assigned input is already back in the idle state.

#### 7.7.2 Trace function

Motion Manager provides a trace function as an additional diagnosis tool with which the internal parameters can be graphically recorded. This enables the dynamic behaviour of the drive to be monitored, which is useful, e.g. for optimisation of the controller parameters.



## 8.1 Communication objects according to CiA 301

#### **Device Type**

| Index  | Sub-<br>index |             | Туре       | Attrb. | Default<br>value | Meaning                          |
|--------|---------------|-------------|------------|--------|------------------|----------------------------------|
| 0x1000 |               | device type | Unsigned32 | ro     |                  | Specification of the device type |

Contains information on the device type, divided into two 16-bit fields:

| byte: MSB              | LSB                   |
|------------------------|-----------------------|
| Additional information | Device Profile Number |

Device Profile Number = 0x192 (402d)

#### **Error Register**

| Index  | Sub-<br>index |                | Туре      | Attrb. | Default<br>value | Meaning        |
|--------|---------------|----------------|-----------|--------|------------------|----------------|
| 0x1001 | 0             | error register | Unsigned8 | ro     |                  | Error register |

The error register contains, bit coded, the types of errors that have most recently occurred. For a description of the error register, see <a href="#">Chapter 4.4 "Emergency Object (error message)"</a>.

### **Pre-defined Error Field (error memory)**

| Index  | Sub-<br>index | Name                 | Туре       | Attrb. | Default<br>value | Meaning                 |
|--------|---------------|----------------------|------------|--------|------------------|-------------------------|
| 0x1003 | 0             | number of errors     | Unsigned8  | rw     |                  | Number of stored errors |
|        | 1             | standard error field | Unsigned32 | ro     |                  | Last error              |
|        | 2             | standard error field | Unsigned32 | ro     |                  | Further errors          |

The error memory contains the coding of the last error to occur. The standard error field is divided into two 16-bit fields:

| byte: MSB              | LSB        |
|------------------------|------------|
| Additional information | Error code |

The meaning of the individual error codes is described in <u>Chapter 4.4 "Emergency Object (error message)"</u>.

The error memory is deleted by writing "0" on subindex 0.

#### **COB-ID SYNC**

| Index  | Sub-<br>index |             | Туре       | Attrb. | Default<br>value | Meaning                                  |
|--------|---------------|-------------|------------|--------|------------------|------------------------------------------|
| 0x1005 | 0             | COB-ID SYNC | Unsigned32 | rw     | 0x80             | CAN object identifier of the SYNC object |



## 8.1 Communication objects according to CiA 301

#### **Manufacturer Device Name**

| Index  | Sub-<br>index | Name                     | Туре       | Attrb. Default value | Meaning     |
|--------|---------------|--------------------------|------------|----------------------|-------------|
| 0x1008 | 0             | manufacturer device name | Vis-String | const                | Device name |

Use the segmented SDO protocol to read out the device name, as it can be larger than 4 bytes.

#### **Manufacturer Hardware Version**

| Index  | Sub-<br>index |                               | Туре       | Attrb. | Default<br>value | Meaning          |
|--------|---------------|-------------------------------|------------|--------|------------------|------------------|
| 0x1009 | 0             | manufacturer hardware version | Vis-String | const  |                  | Hardware Version |

Use the segmented SDO protocol to read out the hardware version, as it can be larger than 4 bytes.

#### **Manufacturer Software Version**

| Index  | Sub-<br>index | Name                          | Туре       |       | Default<br>value | Meaning          |
|--------|---------------|-------------------------------|------------|-------|------------------|------------------|
| 0x100A | 0             | manufacturer software version | Vis-String | const |                  | Software Version |

Use the segmented SDO protocol to read out the software version, as it can be larger than 4 bytes.

#### **Guard Time**

| Index  | Sub-<br>index |            | Туре       | Attrb. | Default<br>value | Meaning                              |
|--------|---------------|------------|------------|--------|------------------|--------------------------------------|
| 0x100C | 0             | guard time | Unsigned16 | rw     | 0                | Monitoring time for Node<br>Guarding |

Specification of the Guard Time in milliseconds, 0 switches off the monitoring.

#### **Life Time Factor**

| Index  | Sub-<br>index | Name             | Туре      | Attrb. | Default<br>value | Meaning                      |
|--------|---------------|------------------|-----------|--------|------------------|------------------------------|
| 0x100D | 0             | life time factor | Unsigned8 | rw     | 0                | Time factor for lifeguarding |

The Life Time Factor multiplied by the Guard Time gives the Life Time for the Node Guarding Protocol (see <a href="Chapter 5.6">Chapter 5.6 "NMT (Network Management)"</a>). 0 switches off lifeguarding.

#### **Store Parameters**

| Index  | Sub-  | Name                          | Туре       | Attrb. | Default | Meaning                            |
|--------|-------|-------------------------------|------------|--------|---------|------------------------------------|
|        | index |                               |            |        | value   |                                    |
| 0x1010 | 0     | number of entries             | Unsigned8  | ro     | 3       | Number of object entries           |
|        | 1     | save all parameters           | Unsigned32 | rw     | 1       | Saves all parameters               |
|        | 2     | save communication parameters | Unsigned32 | rw     | 1       | Save communication parameters only |
|        | 3     | save application parameters   | Unsigned32 | rw     | 1       | Save application parameters only   |

This object saves configuration parameters in the non-volatile Flash memory. Read access provides information about the storage options.



## 8.1 Communication objects according to CiA 301

The storage process is triggered by writing the "save" signature on the relevant subindex:

| Signature | MSB | LSB |     |     |
|-----------|-----|-----|-----|-----|
| ISO 8859  | е   | V   | а   | S   |
| ("ASCII") |     |     |     |     |
| hex       | 65h | 76h | 61h | 73h |

The object corresponds to the FAULHABER SAVE command.

#### **CAUTION!**

### Flash memory



The Flash memory is designed for 10 000 write cycles. If this command is executed more than 10 000 times, the function of the Flash memory can no longer be guaranteed.

▶ Do not execute command more than 10 000 times.

#### **Restore Default Parameters**

| Index  | Sub-<br>index | Name                                     | Туре       | Attrb. | Default<br>value | Meaning                                    |
|--------|---------------|------------------------------------------|------------|--------|------------------|--------------------------------------------|
| 0x1011 | 0             | number of entries                        | Unsigned8  | ro     | 3                | Number of object entries                   |
|        | 1             | restore all default parameters           | Unsigned32 | rw     | 1                | Loads all default parameters               |
|        | 2             | restore default communication parameters | Unsigned32 | rw     | 1                | Load default communication parameters only |
|        | 3             | restore default application parameters   | Unsigned32 | rw     | 1                | Load default application parameters only   |

This object loads the default configuration parameters (status on delivery).

Read access provides information about the restore options.

The restore process is triggered by writing the "load" signature on the relevant subindex:

| Signature | MSB |     | LSB |     |
|-----------|-----|-----|-----|-----|
| ASCII     | d   | a   | 0   | I   |
| hex       | 64h | 61h | 6Fh | 6Ch |

The parameters are not set to the default values until the next boot process (reset).

If the default parameters are to be finally saved, a Save command must be executed after the reset.

#### **COB-ID Emergency Message**

| Index  | Sub-<br>index | Name        | Туре       | Attrb. | Default<br>value | Meaning                                       |
|--------|---------------|-------------|------------|--------|------------------|-----------------------------------------------|
| 0x1014 | 0             | COB-ID EMCY | Unsigned32 | ro     |                  | CAN object identifier of the Emergency Object |



# 8.1 Communication objects according to CiA 301

## **Identity Object**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value | Meaning                                 |
|--------|---------------|-------------------|------------|--------|------------------|-----------------------------------------|
| 0x1018 | 0             | Number of entries | Unsigned8  | ro     | 4                | Number of object entries                |
|        | 1             | Vendor ID         | Unsigned32 | ro     | 327              | Manufacturer ID number (FAULHABER: 327) |
|        | 2             | Product code      | Unsigned32 | ro     | 3 150            | Product ID number                       |
|        | 3             | Revision number   | Unsigned32 | ro     |                  | Version number                          |
|        | 4             | Serial number     | Unsigned32 | ro     |                  | Serial No.                              |

### **Server SDO Parameter**

| Index  | Sub-<br>index | Name                        | Туре       | Attrb. | Default<br>value      | Meaning                                   |
|--------|---------------|-----------------------------|------------|--------|-----------------------|-------------------------------------------|
| 0x1200 | 0             | number of entries           | Unsigned8  | ro     | 2                     | Number of object entries                  |
|        | 1             | COB-ID Client → server (rx) | Unsigned32 | ro     | 0x600<br>+ Node<br>ID | CAN object identifier of the server RxSDO |
|        | 2             | COB-ID Server → client (tx) | Unsigned32 | ro     | 0x580<br>+ Node<br>ID | CAN object identifier of the server TxSDO |

## **Receive PDO1 Communication Parameter**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value      | Meaning                                    |
|--------|---------------|-------------------|------------|--------|-----------------------|--------------------------------------------|
| 0x1400 | 0             | number of entries | Unsigned8  | ro     | 2                     | Number of object entries                   |
|        | 1             | COB-ID            | Unsigned32 | ro     | 0x200<br>+ Node<br>ID | CAN object identifier of the server RxPDO1 |
|        | 2             | transmission type | Unsigned8  | rw     | 255                   | PDO transmission type                      |
|        |               |                   |            |        |                       |                                            |

#### **Receive PDO2 Communication Parameter**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value      | Meaning                                    |
|--------|---------------|-------------------|------------|--------|-----------------------|--------------------------------------------|
| 0x1401 | 0             | number of entries | Unsigned8  | ro     | 2                     | Number of object entries                   |
|        | 1             | COB-ID            | Unsigned32 | ro     | 0x300<br>+ Node<br>ID | CAN object identifier of the server RxPDO2 |
|        | 2             | transmission type | Unsigned8  | rw     | 255                   | PDO transmission type                      |

#### **Receive PDO3 Communication Parameter**

| e server |
|----------|
|          |
|          |

## **Receive PDO1 Mapping Parameter**

| Index  | Sub-<br>index | Name                    | Туре       | Attrb. | Default<br>value | Meaning                                  |
|--------|---------------|-------------------------|------------|--------|------------------|------------------------------------------|
| 0x1600 | 0             | number of entries       | Unsigned8  | ro     | 1                | Number of object entries                 |
|        | 1             | 1st object to be mapped | Unsigned32 | ro     | 0x60400010       | Reference to 16 bit controlword (0x6040) |



# 8.1 Communication objects according to CiA 301

### **Receive PDO2 Mapping Parameter**

| Index  | Sub-<br>index | Name                                | Туре       | Attrb. | Default<br>value | Meaning                                 |
|--------|---------------|-------------------------------------|------------|--------|------------------|-----------------------------------------|
| 0x1601 | 0             | number of entries                   | Unsigned8  | ro     | 2                | Number of object entries                |
|        | 1             | 1st object to be mapped             | Unsigned32 | ro     | 0x23010108       | Reference to 8 bit<br>FAULHABER command |
|        | 2             | 2 <sup>nd</sup> object to be mapped | Unsigned32 | ro     | 0x23010220       | Reference to 32 bit command argument    |

### **Receive PDO3 Mapping Parameter**

| Index  | Sub-<br>index | Name                                | Туре       | Attrb. | Default<br>value | Meaning                                            |
|--------|---------------|-------------------------------------|------------|--------|------------------|----------------------------------------------------|
| 0x1602 | 0             | number of entries                   | Unsigned8  | ro     | 5                | Number of object entries                           |
|        | 1             | 1 <sup>st</sup> object to be mapped | Unsigned32 | ro     | 0x23030108       | Reference to 8 bit trace mode for Parameter 1      |
|        | 2             | 2 <sup>nd</sup> object to be mapped | Unsigned32 | ro     | 0x23030208       | Reference to 8 bit trace mode for Parameter 2      |
|        | 3             | 3 <sup>rd</sup> object to be mapped | Unsigned32 | ro     | 0x23030308       | Reference to 8 bit trace time code setting         |
|        | 4             | 4 <sup>th</sup> object to be mapped | Unsigned32 | ro     | 0x23030408       | Reference to 8 bit trace value "number of packets" |
|        | 5             | 5 <sup>th</sup> object to be mapped | Unsigned32 | ro     | 0x23030508       | Reference to 8 bit trace value "time interval"     |

### **Transmit PDO1 Communication Parameter**

| Index  | Sub-  | Name              | Туре       | Attrb. | Default               | Meaning                                        |
|--------|-------|-------------------|------------|--------|-----------------------|------------------------------------------------|
|        | index |                   |            |        | value                 |                                                |
| 0x1800 | 0     | number of entries | Unsigned8  | ro     | 2                     | Number of object entries                       |
|        | 1     | COB-ID            | Unsigned32 | ro     | 0x180<br>+ Node<br>ID | CAN object identifier of the TxPDO1            |
|        | 2     | transmission type | Unsigned8  | rw     | 255                   | PDO transmission type<br>Default: asynchronous |

#### **Transmit PDO2 Communication Parameter**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value      | Meaning                                                            |
|--------|---------------|-------------------|------------|--------|-----------------------|--------------------------------------------------------------------|
| 0x1801 | 0             | number of entries | Unsigned8  | ro     | 2                     | Number of object entries                                           |
|        | 1             | COB-ID            | Unsigned32 | ro     | 0x280<br>+ Node<br>ID | CAN object identifier of the TxPDO2                                |
|        | 2             | transmission type | Unsigned8  | rw     | 253                   | PDO transmission type<br>Default: asynchronous on<br>request (RTR) |

#### **Transmit PDO3 Communication Parameter**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value      | Meaning                                                                  |
|--------|---------------|-------------------|------------|--------|-----------------------|--------------------------------------------------------------------------|
| 0x1802 | 0             | number of entries | Unsigned8  | ro     | 2                     | Number of object entries                                                 |
|        | 1             | COB-ID            | Unsigned32 | ro     | 0x380<br>+ Node<br>ID | CAN object identifier of the TxPDO3                                      |
|        | 2             | transmission type | Unsigned8  | rw     | 253                   | PDO transmission type<br>asynchronous on request (RTR)<br>or synchronous |



# 8.1 Communication objects according to CiA 301

## **Transmit PDO1 Mapping Parameter**

| Index  | Sub-<br>index | Name                    | Туре       | Attrb. | Default<br>value | Meaning                                 |
|--------|---------------|-------------------------|------------|--------|------------------|-----------------------------------------|
| 0x1A00 | 0             | number of entries       | Unsigned8  | ro     | 1                | Number of object entries                |
|        | 1             | 1st object to be mapped | Unsigned32 | ro     | 0x60410010       | Reference to 16 bit statusword (0x6041) |

## **Transmit PDO2 Mapping Parameter**

| Index  | Sub-  | Name                                | Туре       | Attrb. | Default    | Meaning                              |
|--------|-------|-------------------------------------|------------|--------|------------|--------------------------------------|
|        | index |                                     |            |        | value      |                                      |
| 0x1A01 | 0     | number of entries                   | Unsigned8  | ro     | 3          | Number of object entries             |
|        | 1     | 1st object to be mapped             | Unsigned32 | ro     | 0x23010108 | Reference to 8 bit FAULHABER command |
|        | 2     | 2 <sup>nd</sup> object to be mapped | Unsigned32 | ro     | 0x23020120 | Reference to 32 bit value            |
|        | 3     | 3 <sup>rd</sup> object to be mapped | Unsigned8  | ro     | 0x23020208 | Reference to 8 bit error code        |

## **Transmit PDO3 Mapping Parameter**

| Index  | Sub-  | Name                                | Туре       | Attrb. | Default    | Meaning                                        |
|--------|-------|-------------------------------------|------------|--------|------------|------------------------------------------------|
|        | index |                                     |            |        | value      |                                                |
| 0x1A02 | 0     | number of entries                   | Unsigned8  | ro     | 3          | Number of object entries                       |
|        | 1     | 1st object to be mapped             | Unsigned32 | ro     | 0x23040120 | Reference to 32 bit trace value of Parameter 1 |
|        | 2     | 2 <sup>nd</sup> object to be mapped | Unsigned32 | ro     | 0x23040220 | Reference to 32 bit trace value of Parameter 2 |
|        | 3     | 3 <sup>rd</sup> object to be mapped | Unsigned32 | ro     | 0x23040308 | Reference to 8 bit timecode                    |



## 8.2 Manufacturer-specific objects

#### **FAULHABER Command**

| Index  | Subindex | Name              | Туре       | Attrb. | Default value | Meaning                                 |
|--------|----------|-------------------|------------|--------|---------------|-----------------------------------------|
| 0x2301 | 0        | number of entries | Unsigned8  | ro     | 2             | Number of object entries                |
|        | 1        | command           | Unsigned8  | rw     | 0             | Command byte for FAUL-<br>HABER channel |
|        | 2        | argument          | Unsigned32 | rw     | 0             | Argument for FAULHABER command          |

This object is written by RxPDO2 and always contains the last FAULHABER command to be transmitted.

#### **Return value of FAULHABER Command**

| Index  | Subindex | Name              | Туре       | Attrb. | Default value | Meaning                                  |
|--------|----------|-------------------|------------|--------|---------------|------------------------------------------|
| 0x2302 | 0        | number of entries | Unsigned8  | ro     | 2             | Number of object entries                 |
|        | 1        | value             | Unsigned32 | ro     | 0             | Argument for FAULHABER command           |
|        | 2        | error             | Unsigned8  | ro     | 0             | Error code: 1 = OK, for other errors see |

The content of this object is requested by a request (RTR) on TxPDO2 and delivers the return value for commands on the FAULHABER channel.

#### **Trace Configuration**

| Index  | Subindex | Name              | Туре      | Attrb. | Default value | Meaning                                         |
|--------|----------|-------------------|-----------|--------|---------------|-------------------------------------------------|
| 0x2303 | 0        | number of entries | Unsigned8 | ro     | 5             | Number of object entries                        |
|        | 1        | mode1             | Unsigned8 | rw     | 0             | Trace mode for Parameter 1                      |
|        | 2        | mode2             | Unsigned8 | rw     | 0             | Trace mode for Parameter 2                      |
|        | 3        | time code         | Unsigned8 | rw     | 1             | Data with time code                             |
|        | 4        | packets           | Unsigned8 | rw     | 1             | Number of packets to be transmitted per request |
|        | 5        | period            | Unsigned8 | rw     | 1             | Time interval between packets                   |

This object is written by RxPDO3 and always contains the last trace setting to be sent.

#### **Trace Data**

| Index  | Subindex | Name              | Туре       | Attrb. | Default value | Meaning                        |
|--------|----------|-------------------|------------|--------|---------------|--------------------------------|
| 0x2304 | 0        | number of entries | Unsigned8  | ro     | 3             | Number of object entries       |
|        | 1        | value1            | Unsigned32 | ro     | 0             | Last value of Parameter 1      |
|        | 2        | value2            | Unsigned32 | ro     | 0             | Last value of Param-<br>eter 2 |
|        | 3        | time code         | Unsigned8  | ro     | 0             | Last time code value           |

The content of this object is requested by a request (RTR) on TxPDO3 and delivers the trace data of the set parameters. The values last requested are always temporarily stored here.



## 8.2 Manufacturer-specific objects

### **FAULHABER** fault register

| Index  | Subindex | Name                         | Туре       | Attrb. | Default value | Meaning                                                                              |
|--------|----------|------------------------------|------------|--------|---------------|--------------------------------------------------------------------------------------|
| 0x2320 | 0        | number of entries            | Unsigned8  | ro     | 4             | Number of object entries                                                             |
|        | 1        | internal fault reg-<br>ister | Unsigned16 | ro     | 0             | Current internal fault<br>0 = No fault                                               |
|        | 2        | emergency mask               | Unsigned16 | rw     | 0x00FF        | Faults which trigger an emergency message frame                                      |
|        | 3        | fault mask                   | Unsigned16 | rw     | 0             | Faults which are treated as DSP402 faults and affect the state machine (fault state) |
|        | 4        | errout mask                  | Unsigned16 | rw     | 0x00FF        | Faults which set the error output                                                    |

The error coding described in <u>Chapter 6.8 "Error handling"</u> applies to the FAULHABER error register and the error mask.

#### Set baud rate

| Index  | Subindex | Name      | Туре      | Attrb. | Default value | Meaning       |
|--------|----------|-----------|-----------|--------|---------------|---------------|
| 0x2400 | 0        | Baud rate | Unsigned8 | ro     | 0xFF          | Set baud rate |

This object can be used to query which baud rate is set. The index of the set baud rate is returned or 0xFF, if AutoBaud is set.

| Baud rate  | Index |
|------------|-------|
| 1 000 kBit | 0     |
| 800 kBit   | 1     |
| 500 kBit   | 2     |
| 250 kBit   | 3     |
|            |       |

| Baud rate | Index |
|-----------|-------|
| 125 kBit  | 4     |
| 50 kBit   | 6     |
| 20 kBit   | 7     |
| 10 kBit   | 8     |
| AutoBaud  | 0xFF  |



## 8.3 Drive profile objects according to CiA 402

#### Controlword (0x6040)

| Index  | Subindex | Name        | Туре        | Attrb. | Default value | Meaning       |
|--------|----------|-------------|-------------|--------|---------------|---------------|
| 0x6040 | 0        | controlword | Unsigned 16 | rw     |               | Drive control |

The bits in the controlword are described in Chapter 6.1 "Device Control".

#### Statusword (0x6041)

| Index  | Subindex | Name       | Туре       | Attrb. | Default value | Meaning        |
|--------|----------|------------|------------|--------|---------------|----------------|
| 0x6041 | 0        | statusword | Unsigned16 | ro     |               | Status display |

The bits in the statusword are described in <a href="Chapter 6.1">Chapter 6.1 "Device Control"</a>.

#### Modes of Operation (0x6060)

| Index  | Subindex | Name               | Туре     | Attrb. | Default value | Meaning                 |
|--------|----------|--------------------|----------|--------|---------------|-------------------------|
| 0x6060 | 0        | modes of operation | Integer8 | wo     | 1             | Operating mode changeo- |
|        |          |                    |          |        |               | ver                     |

FAULHABER Motion Control systems support the following operating modes:

- 1 CiA 402 Profile Position Mode (position control)
- 3 CiA 402 Profile Velocity Mode (velocity control)
- 6 CiA 402 Homing Mode (homing)
- -1 FAULHABER specific operating mode

#### Modes of Operation Display (0x6061)

| Index  | Subindex | Name              | Туре     | Attrb. | Default value | Meaning                      |
|--------|----------|-------------------|----------|--------|---------------|------------------------------|
| 0x6061 | 0        | modes of          | Integer8 | ro     | 1             | Display of the set operating |
|        |          | operation display |          |        |               | mode                         |

The set operating mode can be queried here, the meaning of the return values corresponds to the values of the object 0x6060.

#### Position Demand Value (0x6062)

| Index  | Subindex | Name                     | Туре      | Attrb. | Default value | Meaning                                                        |
|--------|----------|--------------------------|-----------|--------|---------------|----------------------------------------------------------------|
| 0x6062 | 0        | position demand<br>value | Integer32 | ro     |               | Last target position (scaled according to the position factor) |

#### Position Actual Value (0x6063)

| Index  | Subindex | Name                  | Туре      | Attrb. | Default value | Meaning                      |
|--------|----------|-----------------------|-----------|--------|---------------|------------------------------|
| 0x6063 | 0        | position actual value | Integer32 | ro     |               | Actual position (increments) |

#### Position Actual Value (0x6064)

| Index  | Subindex | Name                  | Туре      | Attrb. | Default value | Meaning                                                   |
|--------|----------|-----------------------|-----------|--------|---------------|-----------------------------------------------------------|
| 0x6064 | 0        | position actual value | Integer32 | ro     |               | Actual position (scaled according to the position factor) |



## 8.3 Drive profile objects according to CiA 402

### Position Window (0x6067)

| Index  | Sub-<br>index | Name            | Туре       | Attrb. | Default<br>value | Meaning                                                          |
|--------|---------------|-----------------|------------|--------|------------------|------------------------------------------------------------------|
| 0x6067 | 0             | position window | Unsigned32 | rw     | 20               | Target position window (scaled according to the position factor) |

### Position Window Time (0x6068)

| Index  | Sub-<br>index |                      | Туре       | Attrb. | Default<br>value | Meaning                              |
|--------|---------------|----------------------|------------|--------|------------------|--------------------------------------|
| 0x6068 | 0             | position window time | Unsigned16 | rw     | 200              | Time in target position window in ms |

#### **Velocity Sensor Actual Value (0x6069)**

| Index  | Sub-<br>index |                              | Туре      | Attrb. | Default<br>value | Meaning                                                      |
|--------|---------------|------------------------------|-----------|--------|------------------|--------------------------------------------------------------|
| 0x6069 | 0             | velocity sensor actual value | Integer32 | ro     |                  | Actual velocity (scaled according to the encoder resolution) |

## **Velocity Demand Value (0x606B)**

| Index  | Sub-<br>index |                       | Туре      | Attrb. | Default<br>value | Meaning                                                   |
|--------|---------------|-----------------------|-----------|--------|------------------|-----------------------------------------------------------|
| 0x606B | 0             | velocity demand value | Integer32 | ro     |                  | Target velocity (scaled according to the velocity factor) |

### Velocity Actual Value (0x606C)

| Index  | Sub-<br>index |                       | Туре      | Attrb. | Default<br>value | Meaning                                                   |
|--------|---------------|-----------------------|-----------|--------|------------------|-----------------------------------------------------------|
| 0x606C | 0             | velocity actual value | Integer32 | ro     |                  | Actual velocity (scaled according to the velocity factor) |

### Velocity Window (0x606D)

| Index  | Sub-<br>index |                 | Туре       | Attrb. | Default<br>value | Meaning                                                       |
|--------|---------------|-----------------|------------|--------|------------------|---------------------------------------------------------------|
| 0x606D | 0             | velocity window | Unsigned16 | rw     | 20               | End velocity window (scaled according to the velocity factor) |

#### **Velocity Window Time (0x606E)**

| Index  | Sub-<br>index |                      | Туре        | Attrb. | Default<br>value | Meaning                     |
|--------|---------------|----------------------|-------------|--------|------------------|-----------------------------|
| 0x606E | 0             | velocity window time | Unsigned 16 | rw     | 200              | Time in end velocity window |

## Velocity Threshold (0x606F)

| Index  | Sub-<br>index |                    | Туре       | Attrb. | Default<br>value | Meaning                                                            |
|--------|---------------|--------------------|------------|--------|------------------|--------------------------------------------------------------------|
| 0x606F | 0             | velocity threshold | Unsigned16 | rw     | 20               | Velocity threshold value (scaled according to the velocity factor) |



## 8.3 Drive profile objects according to CiA 402

### Velocity Thresold Time (0x6070)

| Index  | Sub-<br>index | Name                    | Туре       | Attrb. | Default<br>value | Meaning                                       |
|--------|---------------|-------------------------|------------|--------|------------------|-----------------------------------------------|
| 0x6070 | 0             | velocity threshold time | Unsigned16 | rw     | 20               | Time below the velocity threshold value in ms |

### **Target Position (0x607A)**

| Index  | Sub-<br>index |                 | Туре      | Attrb. Defa<br>valu | fault Meaning<br>ue                                       |
|--------|---------------|-----------------|-----------|---------------------|-----------------------------------------------------------|
| 0x607A | 0             | Target position | Integer32 | rw                  | Target position (scaled according to the position factor) |

#### Homing Offset (0x607C)

| Index  |       | Name          | Туре      | Attrb. | Default | Meaning                                                                                       |
|--------|-------|---------------|-----------|--------|---------|-----------------------------------------------------------------------------------------------|
|        | index |               |           |        | value   |                                                                                               |
| 0x607C | 0     | homing offset | Integer32 | rw     | 0       | Zero point displacement from the reference position (scaled according to the position factor) |

#### **Software Position Limit (0x607D)**

| Index  | Sub-<br>index |                    | Туре      | Attrb. | Default<br>value | Meaning                       |
|--------|---------------|--------------------|-----------|--------|------------------|-------------------------------|
| 0x607D | 0             | number of entries  | Unsigned8 | ro     | 2                | Number of object entries      |
|        | 1             | min position limit | Integer32 | rw     | -1.8 · 109       | Lower positioning range limit |
|        | 2             | max position limit | Integer32 | rw     | +1.8 · 109       | Upper positioning range limit |

Each scaled according to the position factor.

#### Polarity (0x607E)

| Index  | Sub-<br>index | Name     | Туре      | Attrb. | Default<br>value | Meaning               |
|--------|---------------|----------|-----------|--------|------------------|-----------------------|
| 0x607E | 0             | polarity | Unsigned8 | rw     | 0                | Direction of rotation |

The entries in this object can be used to change the direction of rotation of the connected encoder for the supported operating modes:

Bit  $7 = 1 \rightarrow$  negative direction of rotation in positioning mode

Bit 6 = 1 → negative direction of rotation in velocity mode

## Max Profile Velocity (0x607F)

| Index    | Sub-<br>index                                                      | Name                 | Туре       | Attrb. | Default<br>value | Meaning                                                    |  |  |  |
|----------|--------------------------------------------------------------------|----------------------|------------|--------|------------------|------------------------------------------------------------|--|--|--|
| 0x607F   | 0                                                                  | max profile velocity | Unsigned32 | rw     | *)               | Maximum velocity (scaled according to the velocity factor) |  |  |  |
| *) Depen | *) Dependent on the factory configuration of the Motion Controller |                      |            |        |                  |                                                            |  |  |  |



# 8.3 Drive profile objects according to CiA 402

### Profile Velocity (0x6081)

| Index    | Sub-<br>index                                                      | Name             | Туре       | Attrb. | Default<br>value | Meaning                                                    |  |  |  |
|----------|--------------------------------------------------------------------|------------------|------------|--------|------------------|------------------------------------------------------------|--|--|--|
| 0x6081   | 0                                                                  | profile velocity | Unsigned32 | rw     | *)               | Maximum velocity (scaled according to the velocity factor) |  |  |  |
| *) Depen | *) Dependent on the factory configuration of the Motion Controller |                  |            |        |                  |                                                            |  |  |  |

### Profile Acceleration (0x6083)

| Index  | Sub-<br>index |                      | Туре       | Attrb. | Default<br>value | Meaning                                                            |
|--------|---------------|----------------------|------------|--------|------------------|--------------------------------------------------------------------|
| 0x6083 | 0             | profile acceleration | Unsigned32 | rw     | 30 000           | Maximum acceleration (scaled according to the acceleration factor) |

## Profile Deceleration (0x6084)

| Index  | Sub-<br>index |                      | Туре       | Attrb. | Default<br>value | Meaning                                                     |
|--------|---------------|----------------------|------------|--------|------------------|-------------------------------------------------------------|
| 0x6084 | 0             | profile deceleration | Unsigned32 | rw     | 30 000           | Maximum delay (scaled according to the acceleration factor) |

## Quick Stop Decelaration (0x6085)

| Index  | Sub-<br>index | Name                       | Туре       | Attrb. | Default<br>value | Meaning                                                                             |
|--------|---------------|----------------------------|------------|--------|------------------|-------------------------------------------------------------------------------------|
| 0x6085 | 0             | quick stop<br>deceleration | Unsigned32 | rw     | 30 000           | Quick stop braking ramp value<br>(scaled according to the accelera-<br>tion factor) |

### **Motion Profile Type (0x6086)**

| Index  | Sub-<br>index |                     | Туре      | Attrb. | Default<br>value | Meaning                               |
|--------|---------------|---------------------|-----------|--------|------------------|---------------------------------------|
| 0x6086 | 0             | motion profile type | Integer16 | ro     | 0                | Type of motion profile 0: Linear Ramp |

### Position Encoder Resolution (0x608F)

| Index  | Sub-<br>index | Name               | Туре       | Attrb. | Default<br>value | Meaning                                                              |
|--------|---------------|--------------------|------------|--------|------------------|----------------------------------------------------------------------|
| 0x608F | 0             | number of entries  | Unsigned8  | ro     | 2                | Number of entries                                                    |
|        | 1             | encoder increments | Unsigned32 | rw     | 2048             | Resolution of the external encoder for 4 edge evaluation             |
|        | 2             | motor revolution   | Unsigned32 | rw     | 1                | Number of magnetic pitches with the pulse number named in subindex 1 |



# 8.3 Drive profile objects according to CiA 402

### Position Factor (0x6093)

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value | Meaning                                      |
|--------|---------------|-------------------|------------|--------|------------------|----------------------------------------------|
| 0x6093 | 0             | number of entries | Unsigned8  | ro     | 2                | Number of object entries                     |
|        | 1             | numerator         | Unsigned32 | rw     | 1                | Numerator of the position factor             |
|        | 2             | feed_constant     | Unsigned32 | rw     | 1                | Denominator (divisor) of the position factor |

### **Velocity Factor (0x6096)**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value | Meaning                                   |
|--------|---------------|-------------------|------------|--------|------------------|-------------------------------------------|
| 0x6096 | 0             | number of entries | Unsigned8  | ro     | 2                | Number of object entries                  |
|        | 1             | numerator         | Unsigned32 | rw     | 1                | Numerator of the speed factor             |
|        | 2             | divisor           | Unsigned32 | rw     | 1                | Denominator (divisor) of the speed factor |

### **Acceleration Factor (0x6097)**

| Index  | Sub-<br>index | Name              | Туре       | Attrb. | Default<br>value | Meaning                                          |
|--------|---------------|-------------------|------------|--------|------------------|--------------------------------------------------|
| 0x6097 | 0             | number of entries | Unsigned8  | ro     | 2                | Number of object entries                         |
|        | 1             | numerator         | Unsigned32 | rw     | 1                | Numerator of the acceleration factor             |
|        | 2             | divisor           | Unsigned32 | rw     | 1                | Denominator (Divisor) of the acceleration factor |

## Homing Method (0x6098)

| Index  | Sub-<br>index |               | Туре     | Attrb. | Default<br>value | Meaning                            |
|--------|---------------|---------------|----------|--------|------------------|------------------------------------|
| 0x6098 | 0             | homing method | Integer8 | rw     | 0                | Homing method according to CiA 402 |

### Homing Speed (0x6099)

| Index  | Sub-<br>index | Name                           | Туре       | Attrb. | Default<br>value | Meaning                                                                |
|--------|---------------|--------------------------------|------------|--------|------------------|------------------------------------------------------------------------|
| 0x6099 | 0             | number of entries              | Unsigned8  | ro     | 2                | Number of object entries                                               |
|        | 1             | speed during search for switch | Unsigned32 | rw     | 400              | Speed during switch search (scaled according to the velocity factor)   |
|        | 2             | speed during search for home   | Unsigned32 | rw     | 100              | Speed during search for zero (scaled according to the velocity factor) |

## Homing Acceleration (0x609A)

| Index  | Sub-<br>index |                     | Туре       | Attrb. | Default<br>value | Meaning                                                                  |
|--------|---------------|---------------------|------------|--------|------------------|--------------------------------------------------------------------------|
| 0x609A | 0             | homing acceleration | Unsigned32 | rw     | 50               | acceleration during homing (scaled according to the acceleration factor) |



## 8.3 Drive profile objects according to CiA 402

### **Velocity Control Parameter Set (0x60F9)**

| Index    | Sub-<br>index | Name                                 | Туре            | Attrb. | Default<br>value | Meaning                    |
|----------|---------------|--------------------------------------|-----------------|--------|------------------|----------------------------|
| 0x60F9   | 0             | number of entries                    | Unsigned8       | ro     | 2                | Number of object entries   |
|          | 1             | gain                                 | Unsigned16      | rw     | *)               | Velocity controller P term |
|          | 2             | integration time constant            | Unsigned16      | rw     | *)               | Velocity controller I term |
|          |               |                                      |                 |        |                  |                            |
| *) Depen | dent o        | n the factory configuration of the M | otion Controlle | er     |                  |                            |

### Control Effort (0x60FA)

| Index  | Sub-<br>index |                | Туре       | Attrb. | Default<br>value | Meaning           |
|--------|---------------|----------------|------------|--------|------------------|-------------------|
| 0x60FA | 0             | Control Effort | Unsigned32 | ro     |                  | Controller output |

### Position Control Parameter Set (0x60FB)

| Index    | Sub-<br>index                                                      | Name              | Туре       | Attrb. | Default<br>value | Meaning                    |  |  |  |  |
|----------|--------------------------------------------------------------------|-------------------|------------|--------|------------------|----------------------------|--|--|--|--|
| 0x60FB   | 0                                                                  | Number of entries | Unsigned8  | ro     | 2                | Number of entries          |  |  |  |  |
|          | 1                                                                  | gain              | Unsigned16 | rw     | *)               | Position controller P term |  |  |  |  |
|          | 2                                                                  | D constant        | Unsigned16 | rw     | *)               | Position controller D term |  |  |  |  |
|          |                                                                    |                   |            |        |                  |                            |  |  |  |  |
| *) Depen | *) Dependent on the factory configuration of the Motion Controller |                   |            |        |                  |                            |  |  |  |  |

## Position Demand Value (0x60FC)

| Index  | Sub-<br>index |                       | Туре      | Attrb. | Default<br>value | Meaning                           |
|--------|---------------|-----------------------|-----------|--------|------------------|-----------------------------------|
| 0x60FC | 0             | position demand value | Integer32 | ro     |                  | Last target position (increments) |

### **Target Velocity (0x60FF)**

| Index  | Sub-<br>index |                 | Туре      | Attrb. | Default<br>value | Meaning         |
|--------|---------------|-----------------|-----------|--------|------------------|-----------------|
| 0x60FF | 0             | target velocity | Integer32 | rw     |                  | Target velocity |

The target velocity is specified in the units defined by the user and is converted in the internal display (1/min) using the velocity factor.

### Drive Data (0x6510)

| Index  | Sub-<br>index | Name                | Туре       | Attrb. | Default<br>value | Meaning                                     |
|--------|---------------|---------------------|------------|--------|------------------|---------------------------------------------|
| 0x6510 | 0             | number of entries   | Unsigned8  | ro     | 3                | Number of object entries                    |
|        | 1             | motor type          | Integer32  | rw     | *                | Set motor type<br>0 LM motor                |
|        | 2             | speed constant KN   | Unsigned16 | rw     | *)               | Speed constant Kn of the motor Unit: mm/s/V |
|        | 3             | motor resistance RM | Unsigned32 | rw     | *)               | Motor resistance RM Unit: $m\Omega$         |

<sup>\*)</sup> Dependent on the factory configuration of the Motion Controller



#### 8.4 FAULHABER commands

The FAULHABER commands can be used to configure and control the drive in a very easy way. All the supported ASCII commands of the serial version are available as a CAN message frame on PDO2, the first byte always contains the HEX value of the command, the following 4 bytes can then contain data:

#### **RxPDO2: FAULHABER Command**

| 11 bit identifier      | 5 bytes ι | ıser data |     |     |     |  |
|------------------------|-----------|-----------|-----|-----|-----|--|
| 0x300 (768d) + Node-ID | Cmd       | LLB       | LHB | HLB | ННВ |  |

The device must be in NMT "Operational" state for configuration of the drive using the FAULHABER channel

Part of the parameter can also be set using the object dictionary, but others can only be set using the FAULHABER channel.

Several parameters can only be set and used in FAULHABER operating mode Modes of operation = -1 (Object 0x6060 or OPMOD command), as they have a direct effect on the drive behaviour.

The response behaviour of the FAULHABER commands depends on the setting of the transmission type of TxPDO2 (OD-Index 0x1801):

a.) transmission type = 0-240

The commands are not acknowledged until a SYNC object is received on TxPDO2 (see <u>Chapter 4.5</u> <u>"SYNC object"</u>).

b.) transmission type = 252

The response to a command is not made available until a SYNC object is received and can then be requested with a request (RTR) on TxPDO2.

c.) transmission type = 253 (default)

After sending the command on RxPDO2, a request (RTR) must be performed on TxPDO2, in order to obtain the response to query commands or to check the success of send commands.

d.) transmission type = 255

The commands are immediately acknowledged on TxPDO2.

#### TxPDO2: FAULHABER Data

| 11 bit identifier      | 5 bytes | user data |     |     |     |       |  |
|------------------------|---------|-----------|-----|-----|-----|-------|--|
| 0x280 (640d) + Node-ID | Cmd     | LLB       | LHB | HLB | HHB | Error |  |



### 8.4 FAULHABER commands

6 bytes must always be returned, whereby the first byte gives the command and the following 4 bytes the required value as a long integer (for pure send commands 0) followed by an error code:

| Error | Explanation                      |
|-------|----------------------------------|
| 1     | Command successfully executed    |
| -2    | EEPROM writing done              |
| -4    | Overtemperature – drive disabled |
| -5    | Invalid parameter                |
| -7    | Unknown command                  |
| -8    | Command not available            |
| -13   | Flash defect                     |

#### Example:

Query of the actual position of node 3 ("POS" command):

Transmit ID 303: 40 00 00 00 00

Request ID 283

Receive ID 283: 40 A0 86 01 00 01

→ Actual position = 100000D

## 8.4.1 Basic setting commands

The commands listed here are used to configure basic setting parameters, which are stored in the flash data memory via the SAVE command, and from there are reloaded again after switching on.

### **Commands for special FAULHABER operating modes**

Only available in FAULHABER mode (Modes of operation = OPMOD = -1)

| Command   | Hex value | Data | Function                        | Description                                                                                                                                                                                                                                                             |
|-----------|-----------|------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OPMOD     | 0xFD      | 0    | Operation Mode                  | CANopen operating mode: -1: FAULHABER mode 1: Profile Position Mode 3: Profile Velocity Mode 6: Homing Mode Corresponds to object 0x6060 (modes of operation)                                                                                                           |
| SOR       | 0x8E      | 0-4  | Source For Velocity             | Source for target velocity: 0: CAN interface (default) 1: Voltage at analog input 2: PWM signal at analog input 3: Current limit value via analog input 4: Current limiting value via analog input with evaluation of the sign for presetting the direction of movement |
| CONTMOD   | 0x06      | 0    | Continuous Mode                 | Switch back to normal mode from an enhanced mode                                                                                                                                                                                                                        |
| STEPMOD   | 0x46      | 0    | Stepper motor mode              | Change to stepper motor mode                                                                                                                                                                                                                                            |
| APCMOD    | 0x02      | 0    | Analog Position Control<br>Mode | Change to position control via analog voltage                                                                                                                                                                                                                           |
| ENCMOD    | 0x10      | 0    | Encoder Mode                    | Change to encoder mode An external encoder serves as position detector (the current position value is set to 0)                                                                                                                                                         |
| HALLSPEED | 0x3B      | 0    | Hall sensor as speed sensor     | Speed via Hall sensors in encoder mode                                                                                                                                                                                                                                  |
| ENCSPEED  | 0x12      | 0    | Encoder as speed sensor         | Speed via encoder signals in encoder mode                                                                                                                                                                                                                               |
| GEARMOD   | 0x1D      | 0    | Gearing Mode                    | Change to gearing mode                                                                                                                                                                                                                                                  |
| VOLTMOD   | 0x49      | 0    | Set Voltage Mode                | Activate Voltage Regulator Mode                                                                                                                                                                                                                                         |
| IXRMOD    | 0x50      | 0    | Set IxR Mode                    | Activate IxR control                                                                                                                                                                                                                                                    |



## **8.4 FAULHABER commands**

# **Parameters for basic settings**

| Command | Hex value | Data  | Function                | Description                                                                                                                                             |
|---------|-----------|-------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENCRES  | 0x70      | Value | Load Encoder Resolution | Load resolution of external encoder (4 times pulse/mm).  Value: 8 to 65 535                                                                             |
| 1751    |           |       |                         | Corresponds to object 0x608F                                                                                                                            |
| KN      | 0x9E      | Value | Load Speed Constant     | Load speed constant K <sub>n</sub> in accordance with information in<br>the data sheet. Unit: mm/s/V.<br>Value: 016 383<br>Corresponds to object 0x6510 |
| RM      | 0x9F      | Value | Load Motor Resistance   | Load motor resistance RM according to specification in data sheet. Unit: $m\Omega$ .  Value: 10320 000  Corresponds to object 0x6510                    |
| STW     | 0x77      | Value | Load Step Width         | Load step width for step motor and gearing mode Value: 165 535                                                                                          |
| STN     | 0x64      | Value | Load Step Number        | Load number of steps per revolution for step motor and gearing mode  Value: 165 535                                                                     |
| MV      | 0x85      | Value | Minimum Velocity        | Specification of minimum velocity in mm/s for target velocity via analog voltage (SOR1, SOR2)  Value: 010 000                                           |
| MAV     | 0x83      | Value | Minimum Analog Voltage  | Presetting of minimum start voltage in mV for presetting speed via analog voltage (SOR1, SOR2)  Value: 010 000                                          |
| ADL     | 0x00      | 0     | Analog Direction Left   | Positive voltages at the analog input result in anticlockwise rotation of the cage bar (SOR1, SOR2)                                                     |
| ADR     | 0x01      | 0     | Analog Direction Right  | Positive voltages at the analog input result in clockwise rotation of the cage bar (SOR1, SOR2)                                                         |
| SIN     | 0xA0      | 0 – 1 | Sinus commutation       | No block commutation within the upper velocity range (default)     Block commutation within the upper velocity range (full modulation)                  |



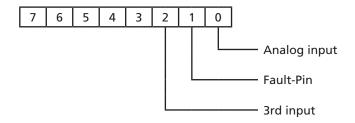
## **8.4 FAULHABER commands**

# **General parameters**

| Command  | Hex value | Data  | Function                            | Description                                                                                                                                                                                                                                                           |
|----------|-----------|-------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LL       | 0xB5v     | Value | Load Position Range Limits          | Load limit positions (the drive cannot be moved out of these limits). Positive values specify the upper limit and negative values the lower. The range limits are only active if APL1 is. Value: $-1.8 \cdot 10^9 \dots +1.8 \cdot 10^9$ Corresponds to object 0x607D |
| APL      | 0x03      | 0-1   | Activate/Deactivate Position Limits | Activate range limits (LL) (valid for all operating modes in FAULHABER Mode except VOLTMOD).  1: Position limits activated 0: Position limits deactivated                                                                                                             |
| SP       | 0x8F      | Value | Load Maximum Speed                  | Load maximum speed (mm/s). Setting applies to all modes. Value: 010 000 Corresponds to object 0x607F or 0x6081                                                                                                                                                        |
| AC       | 0x65      | Value | Load Command Acceleration           | Load acceleration value (mm/s²).  Value: 030 000  Corresponds to object 0x6083                                                                                                                                                                                        |
| DEC      | 0x6D      | Value | Load Command Deceleration           | Load deceleration value (mm/s²).  Value: 0 to 30 000  Corresponds to object 0x6084 or 0x6081                                                                                                                                                                          |
| SR       | 0xA4      | Value | Load Sampling Rate                  | Load sampling rate of the velocity controller as a multi-<br>plier of 200 µs.<br>Value: 120                                                                                                                                                                           |
| POR      | 0x89      | Value | Load Velocity Proportional<br>Term  | Load velocity controller amplification.  Values: 1255  Corresponds to object 0x60F9                                                                                                                                                                                   |
| I        | 0x7B      | Value | Load Velocity Integral<br>Term      | Load velocity controller integral term.  Value: 1255  Corresponds to object 0x60F9                                                                                                                                                                                    |
| PP       | 0x9B      | Value | Load Position Proportional<br>Term  | Load position controller amplification.  Value: 1255  Corresponds to object 0x60FB                                                                                                                                                                                    |
| PD       | 0x9C      | Value | Load Position Differential<br>Term  | Load position controller D-term.  Value: 1255  Corresponds to object 0x60FB                                                                                                                                                                                           |
| CI       | 0xA2      | Value | Load Current Integral<br>Term       | Load integral term for current controller.  Value: 1255                                                                                                                                                                                                               |
| LPC      | 0x81      | Value | Load Peak Current Limit             | Load peak current (mA). Value: 012 000                                                                                                                                                                                                                                |
| LCC      | 0x80      | Value | Load Continuous Current<br>Limit    | Load continuous current (mA). Value: 012 000                                                                                                                                                                                                                          |
| DEV      | 0x6F      | Value | Load Deviation                      | Load maximum permissible deviation of actual velocity from target velocity (deviation)  Value: 030 000                                                                                                                                                                |
| CORRIDOR | 0x9D      | Value | Load Corridor                       | Window around the target position.  Value: 132 767  Corresponds to object 0x6067                                                                                                                                                                                      |



## 8.4 FAULHABER commands


# Configuration of fault pin and digital inputs

| Command | Hex value | Data  | Function              | Description                                                                          |
|---------|-----------|-------|-----------------------|--------------------------------------------------------------------------------------|
| ERROUT  | 0x14      | 0     | Error Output          | Fault pin as error output.                                                           |
| ENCOUT  | 0x11      | 0     | Encoder Output        | Fault pin as pulse output.                                                           |
| DIGOUT  | 0x0A      | 0     | Digital Output        | Fault pin as digital output. The output is set to low level.                         |
| POSOUT  | 0x4C      | 0     | Position Output       | Fault pin as digital output for display of the condition: "target position reached". |
| DIRIN   | 0x0C      | 0     | Direction Input       | Fault pin as rotational direction input.                                             |
| REFIN   | 0x41      | 0     | Reference Input       | Fault pin as reference or limit switch input.                                        |
| DCE     | 0x6B      | Value | Delayed Current Error | Delayed error output for ERROUT in 1/100 sec.  Value: 065 535                        |
| LPN     | 0x82      | Value | Load Pulse Number     | Preset pulse number for ENCOUT.  Value: 1255                                         |
| CO      | 0x05      | 0     | Clear Output          | Set digital output DIGOUT to low level.                                              |
| SO      | 0x45      | 0     | Set Output            | Set digital output DIGOUT to high level.                                             |
| TO      | 0x55      | 0     | Toggle Output         | Toggle to digital output DIGOUT.                                                     |
| SETPLC  | 0x51      | 0     | Set PLC inputs        | Digital inputs PLC-compatible (24 V level).                                          |
| SETTTL  | 0x52      | 0     | Set TTL inputs        | Digital inputs TTL-compatible (5 V level).                                           |

# Configuring homing and limit switches in FAULHABER mode

| Command | Hex value | Data  | Function                               | Description                                                                                                                                               |
|---------|-----------|-------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| НР      | 0x79      | 0     | Hard Polarity                          | Define valid edge and polarity of respective limit switches: 1: Rising edge and high level valid. 0: Falling edge and low level valid.                    |
| НВ      | 0x73      | 0     | Hard Blocking                          | Activate Hard Blocking function for relevant limit switch.                                                                                                |
| HD      | 0x74      | 0     | Hard Direction                         | Presetting of direction of rotation that is blocked with HB of respective limit switch.  1: Clockwise rotation blocked  0: Anticlockwise rotation blocked |
| SHA     | A8x0      | 0     | Set Home Arming for<br>Homing Sequence | Homing behaviour (GOHOSEQ): Set position value to 0 at edge of respective limit switch.                                                                   |
| SHL     | 0x90      | 0     | Set Hard Limit for<br>Homing Sequence  | Homing behaviour (GOHOSEQ): Stop motor at edge of respective limit switch.                                                                                |
| SHN     | 0x9A      | Value | Set Hard Notify for<br>Homing Sequence | Homing behaviour (GOHOSEQ): Transmit message to Master for edge at respective limit switch (statusword Bit 14=1).                                         |
| HOSP    | 0x78      | Value | Load Homing Speed                      | Load speed and direction of rotation for homing (GO-HOSEQ, GOHIX, FHIX).  Value: –10 000 to 10 000 mm/s                                                   |
| НА      | 0x72      | 0     | Home Arming                            | Set position value to 0 and delete relevant HA bit at edge of respective limit switch. Setting is not saved.                                              |
| HL      | 0x75      | 0     | Hard Limit                             | Stop motor and delete relevant HL bit at edge of respective limit switch. Setting is not saved.                                                           |
| HN      | 0x76      | 0     | Hard Notify                            | Transmit message to respective Master for edge at respective limit switch (Statusword Bit 14=1) and delete corresponding HN bit. Setting is not sayed.    |

Bit mask of the limit switches:





## **8.4 FAULHABER commands**

# 8.4.2 Query commands for basic settings

# **Operating modes and general parameters**

| Command | Hex value | Data  | Function             | Description                                                                                                                                                                         |  |
|---------|-----------|-------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GOPMOD  | 0xFE      | 0     | Get Operation Mode   | Display current CANopen operating mode: -1: FAULHABER mode 1: Profile Position Mode 3: Profile Velocity Mode 6: Homing Mode Corresponds to object 0x6061 (modes of operation displa |  |
| CST     | 0x58      | x58 0 | Configuration Status | Set operating mode. Return value binary coded (LSB=Bit 0): Bit 0-2. reserved                                                                                                        |  |
|         |           |       |                      | Bit 3-4, Source for target velocity: 0: SOR0 (CAN interface) 1: SOR1 (Analog voltage) 2: SOR2 (PWM signal) 3: SOR3 (current limitation value)                                       |  |
|         |           |       |                      | Bit 5-6, reserved Bit 7-9, FAULHABER mode: 0: CONTMOD 1: STEPMOD 2: APCMOD 3: ENCMOD/HALLSPEED 4: ENCMOD/ENCSPEED 5: GEARMOD 6: VOLTMOD                                             |  |
|         |           |       |                      | Bit 10, power amplifier:<br>0: Disabled (DI)<br>1: Enabled (EN)                                                                                                                     |  |
|         |           |       |                      | Bit 11, position controller:<br>0: Switched off<br>1: Switched on                                                                                                                   |  |
|         |           |       |                      | Bit 12, analog direction:<br>0: ADL<br>1: ADR                                                                                                                                       |  |
|         |           |       |                      | Bit 13, Position Limits APL:<br>0: deactivated<br>1: activated                                                                                                                      |  |
|         |           |       |                      | Bit 14, sinus commutation SIN: 0: Allow block commutation 1: Do not allow block commutation                                                                                         |  |



# **8.4 FAULHABER commands**

|           |           | _ |                              |                                                         |
|-----------|-----------|---|------------------------------|---------------------------------------------------------|
| Command   | Hex value |   | Function                     | Description                                             |
| GMOD      | 0x28      | 0 | Get Mode                     | Set FAULHABER mode:                                     |
|           |           |   |                              | 0: CONTMOD                                              |
|           |           |   |                              | 1: STEPMOD                                              |
|           |           |   |                              | 2: APCMOD                                               |
|           |           |   |                              | 3: ENCMOD / HALLSPEED                                   |
|           |           |   |                              | 4: ENCMOD / ENCSPEED                                    |
|           |           |   |                              | 5: GEARMOD                                              |
|           |           |   |                              | 6: VOLTMOD                                              |
| GENCRES   | 0x1E      | 0 | Get Encoder Resolution       | Set encode resolution (ENCRES)                          |
|           |           |   |                              | Corresponds to object 0x608F                            |
| GMOTTYP   | 0x29      | 0 | Get Motor Type               | Set motor type                                          |
|           |           |   | 71                           | 0: LM motor                                             |
| GKN       | 0x4D      | 0 | Get Speed Constant           | Speed constant in mm/s/V (KN)                           |
|           |           |   |                              | Corresponds to object 0x6510                            |
| GRM       | 0x4E      | 0 | Get Motor Resistance         | Motor resistance in m $\Omega$ (RM)                     |
|           |           |   |                              | Corresponds to object 0x6510                            |
| GSTW      | 0x39      | 0 | Get Step Width               | Set step width (STW)                                    |
| GSTN      | 0x38      | 0 | Get Step Number              | Set number of steps per revolution (STN)                |
| GMV       | 0x2A      | 0 | Get Minimum Velocity         | Set minimum velocity in mm/s (MV)                       |
| GMAV      | 0x27      | 0 | Get minimum analog           | Set minimum start voltage value in mV (MAV)             |
| CIVII (V  | OXL       | · | voltage                      | Jee minimum stare voltage value in miv (1417 tv)        |
| GPL       | 0x31      | 0 | Get Positive Limit           | Set positive limit position (LL)                        |
| G. L      | 0,001     | Ŭ | Geer osterve Emilie          | Corresponds to object 0x607D                            |
| GNL       | 0x2C      | 0 | Get Negative Limit           | Set negative limit position (LL)                        |
| CITE      | OXEC      | · | Get Negative Elline          | Corresponds to object 0x607D                            |
| GSP       | 0x36      | 0 | Get Maximum Speed            | Set maximum speed in mm/s (SP)                          |
| 931       | 0,00      | U | det Maximum speed            | Corresponds to object 0x607F ory 0x6081                 |
| GAC       | 0x15      | 0 | Get Acceleration             | Set acceleration value in mm/s² (AC)                    |
| dAC       | 0.113     | U | det Acceleration             | Corresponds to object 0x6083                            |
| GDEC      | 0x1B      | 0 | Get Deceleration             | Set deceleration value in mm/s <sup>2</sup> (DEC)       |
| GDEC      | OXID      | U | det betelefation             | Corresponds to object 0x6084                            |
| GSR       | 0x56      | 0 | Get Sampling Rate            | Set sampling rate of the speed controller ms/10 (SR)    |
| GPOR      | 0x33      | 0 | Get Velocity Prop. Term      | Set amplification value of the speed controller (POR)   |
| GFOR      | 0.722     | U | det velocity Prop. Term      | Corresponds to object 0x60F9                            |
| GI        | 0x26      | 0 | Got Volocity Intogral Torm   | Set integral term of the speed controller (I)           |
| di        | 0,20      | U | det velocity liftegraf fermi | Corresponds to object 0x60F9                            |
| GPP       | 0x5D      | 0 | Get Position Prop. Term      | Set amplification value of the position controller (PP) |
| GFF       | UXJD      | U | det rosition rrop. Term      | Corresponds to object 0x60FB                            |
| GPD       | 0x5E      | 0 | Get Position D-Term          | Set D-term of the position controller (PD)              |
| GPD       | UXDE      | U | det rosition D-Term          | Corresponds to object 0x60FB                            |
| GCI       | 0x63      | 0 | Get Current Integral Term    | Set integral term of the current controller (CI)        |
| GPC       |           | 0 | 9                            |                                                         |
| GCC       | 0x30      | 0 | Get Peak Current             | Set peak current in mA (LPC)                            |
|           | 0x18      | - | Get Continuous Current       | Set continuous current in mA (LCC)                      |
| GDEV      | 0x1C      | 0 | Get Deviation                | Set deviation value (DEV)                               |
| GCORRIDOR | UX62      | 0 | Get Corridor                 | Set window around the target position (CORRIDOR)        |
|           |           |   |                              | Corresponds to object 0x6067.                           |



## **8.4 FAULHABER commands**

# Configuration of fault pin and digital inputs

| Command     | Hex value    | Data | Function                                      | Description                                                                                 |
|-------------|--------------|------|-----------------------------------------------|---------------------------------------------------------------------------------------------|
| IOC         | 0x5C         | 0    | I/O Configuration                             | Set input/output configuration. Return value binary coded (LSB=Bit 0):                      |
|             |              |      |                                               | Bit 0-7, FAULHABER Hard Blocking:<br>0-7: Function active for input 1-3                     |
|             |              |      |                                               | Bit 8-15, FAULHABER Hard Polarity:<br>0-7: Rising edge at input 1-3                         |
|             |              |      |                                               | Bit 16-23, FAULHABER Hard Direction:<br>0-7: Clockwise movement blocked at input 1-3        |
|             |              |      |                                               | Bit 24, state of digital output:<br>0: Low<br>1: High                                       |
|             |              |      |                                               | Bit 25, Level of digital inputs:<br>0: TTL level (5 V)<br>1: PLC LEVEL (24 V)               |
|             |              |      |                                               | Bit 26-28, function of fault pin: 0: ERROUT 1: ENCOUT 2: DIGOUT 3: DIRIN 4: REFIN 5: POSOUT |
| GDCE<br>GPN | 0x1A<br>0x32 | 0    | Get Delayed Current Error<br>Get Pulse Number | Set value of the error output delay (DCE) Set pulse number (LPN)                            |

# Configuration of the homing in FAULHABER mode

| Command    | Hex value | Data | Function             | Description                                                                                                                                |  |
|------------|-----------|------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| HOC 0x5B 0 |           | 0    | Homing Configuration | Set homing configuration.<br>Return value binary coded (LSB = Bit 0):                                                                      |  |
|            |           |      |                      | Bit 0-7, SHA setting for input 1-8<br>Bit 8-15, SHN setting for input 1-8<br>Bit 16-23, SHL setting for input 1-8<br>(Input 6-8: Reserved) |  |
| GHOSP      | 0x24      | 0    | Get Homing Speed     | Set homing speed in mm/s (HOSP).                                                                                                           |  |

## 8.4.3 Miscellaneous commands

| Command        | Hex value | Data | Function              | Description                                                                                                                                                                                                                        |
|----------------|-----------|------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAVE<br>EEPSAV |           |      | Save Parameters       | Save current parameters and configuration setting to Flash memory. The drive will also start with these settings when next switched on. Corresponds to object 0x1010.                                                              |
|                |           |      |                       | Important: Command may not be executed more than 10 000 times, as otherwise the function of the Flash memory can no longer be guaranteed.                                                                                          |
| RESET          | 0x59      | 0    | Reset                 | Restart drive node. Corresponds to NMT reset node.                                                                                                                                                                                 |
| RN             | 0x44      | 0    | Reset Node            | Set application parameters to original values (ROM values) (current, acceleration, controller parameters, maximum speed, limit positions); communication parameters, operating mode and hardware configuration are retained.       |
| FCONFIG        | 0xD0      | 0    | Factory Configuration | All configurations and values are reset to the delivery status.                                                                                                                                                                    |
|                |           |      |                       | After this command the drive performs a reset.                                                                                                                                                                                     |
|                |           |      |                       | Attention: Customer-specific factory settings are also lost. The Node-ID is set to 255 (unconfigured), therefore LSS configuration is necessary to establish a new connection! The command can be executed a maximum 10 000 times. |



## 8.4 FAULHABER commands

## 8.4.4 Motion control commands

The commands listed here are only available in FAULHABER Mode (Modes of operation = -1).

| Command | Hex value | Data         | Function               | Description                                                                                                                                                     |
|---------|-----------|--------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DI      | 80x0      | 0            | Disable Drive          | Deactivate drive.                                                                                                                                               |
| EN      | 0x0F      | 0            | Enable Drive           | Activate drive.                                                                                                                                                 |
| M       | 0x3C      | 0            | Initiate Motion        | Activate position control and start positioning.                                                                                                                |
| LA      | 0xB4      | Value        | Load Absolute Position | Load new absolute target position.  Value: -1.8 · 10 <sup>9</sup> 1.8 · 10 <sup>9</sup>                                                                         |
| LR      | 0xB6      | Value        | Load Relative Position | Load new relative target position, in relation to last started target position. The resulting absolute target position must lie between –2.14 10° and 2.14 10°. |
| V       | 0x93      | Value        | Select Velocity Mode   | Activate velocity mode and set specified value as target velocity (velocity control).  Value: -10 000 10 000 mm/s                                               |
| U       | 0x92      | Value        | Set Output Voltage     | Output PWM value in VOLTMOD. Value: -32 76732 767 (corresponds to -Uv+Uv)                                                                                       |
| GOHOSEQ | 0x2F      | 0            | Go Homing Sequence     | Execute FAULHABER homing sequence. A homing sequence is executed (if programmed) irrespective of the current mode.                                              |
| GOHIX   | 0x2E      | 0            | Go Hall Index          | Move LM motor to Hall zero point (Hall index) within a magnetic pitch and set actual position value to 0.                                                       |
| GOIX    | 0xA3      | 0            | Go Encoder Index       | Move to the encoder index at the Fault pin and set actual position value to 0 (ext. encoder).                                                                   |
| НО      | 0xB8      | 0/val-<br>ue | Define Home Position   | Data = 0: Set actual position to 0.<br>Otherwise: Set actual position to specified value.<br>Value: $-1.8 \cdot 10^9 \dots 1.8 \cdot 10^9$                      |



## **8.4 FAULHABER commands**

# 8.4.5 General query commands

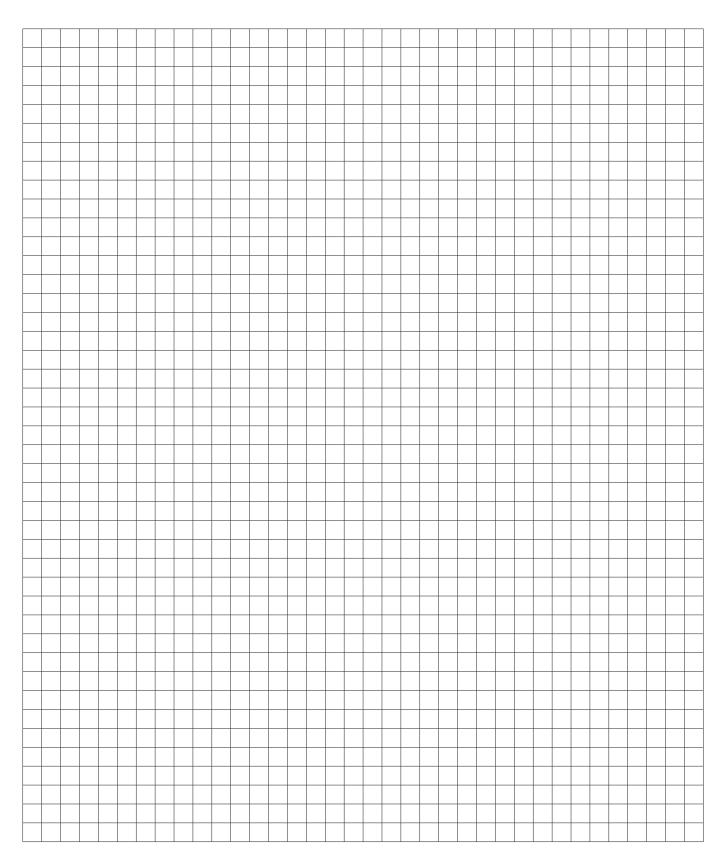
| Command | Hex value    | Data  | Function             | Description                                                                                                                                                                                                                                                                 |
|---------|--------------|-------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POS     | 0x40         | 0     | Get Actual Position  | Current actual position.                                                                                                                                                                                                                                                    |
|         |              |       |                      | Corresponds to object 0x6063.                                                                                                                                                                                                                                               |
| TPOS    | 0x4B         | 0     | Get Target Position  | Target position of the positioning last started. Corresponds to object 0x60FC.                                                                                                                                                                                              |
| GV      | 0x3A         | 0     | Get Target Velocity  | Current target velocity in mm/s.                                                                                                                                                                                                                                            |
|         | 07.07        |       | cot ranger venturity | Corresponds to object 0x606B.                                                                                                                                                                                                                                               |
| GN      | 0x2B         | 0     | Get Actual Velocity  | Current actual speed in mm/s.                                                                                                                                                                                                                                               |
| GU      | 0x5F         | 0     | Get PWM Voltage      | Corresponds to object 0x6069. Set PWM value in VOLTMOD.                                                                                                                                                                                                                     |
| GRU     | 0x5F         | 0     | Get Real PWM Voltage | Current controller output value.                                                                                                                                                                                                                                            |
| GCL     | 0x00<br>0x19 | 0     | Get Current Limit    | Current limitation current in mA.                                                                                                                                                                                                                                           |
| GRC     | 0x19<br>0x34 | 0     | Get Real Current     | Current actual current in mA.                                                                                                                                                                                                                                               |
| TEM     | 0x47         | 0     | Get Temperature      | Current housing temperature in °C.                                                                                                                                                                                                                                          |
| GADV    | 0xB2         | Value | Get Analog Voltage   | Read out the voltage applied at the given input (value). Scaling: 1 000 digits = 1 V 1: Voltage at AnIn 3: Voltage at 3rd In                                                                                                                                                |
|         |              |       |                      | Return value input 1: -10 000 10 000<br>Return value input 3: 0 10 000                                                                                                                                                                                                      |
|         |              |       |                      | Value: 1, 3                                                                                                                                                                                                                                                                 |
| OST     | 0x57         | 0     | Operation Status     | Display current operating status.<br>Return value binary coded (LSB=Bit 0):                                                                                                                                                                                                 |
|         |              |       |                      | Bit 0: Homing running Bit 1-3: Reserved Bit 4: Current limitation active Bit 5: Deviation error Bit 6: Overvoltage Bit 7: Overtemperature Bit 8: Status input 1 Bit 9: Status input 2 Bit 10: Status input 3 Bit 13-15: Reserved for other inputs Bit 16: Position attained |
| SWS     | 0x5A         | 0     | Switch Status        | Temporary limit switch settings. Return value binary coded (LSB=Bit 0):                                                                                                                                                                                                     |
|         |              |       |                      | Bit 0-7: HA setting for input 1-8 Bit 8-15: HN setting for input 1-8 Bit 16-23: HL setting for input 1-8 Bit 24-31: Specifies which limit switch 1-8 has already switched (is reset again when the respective input is reset)                                               |



## **8.4 FAULHABER commands**

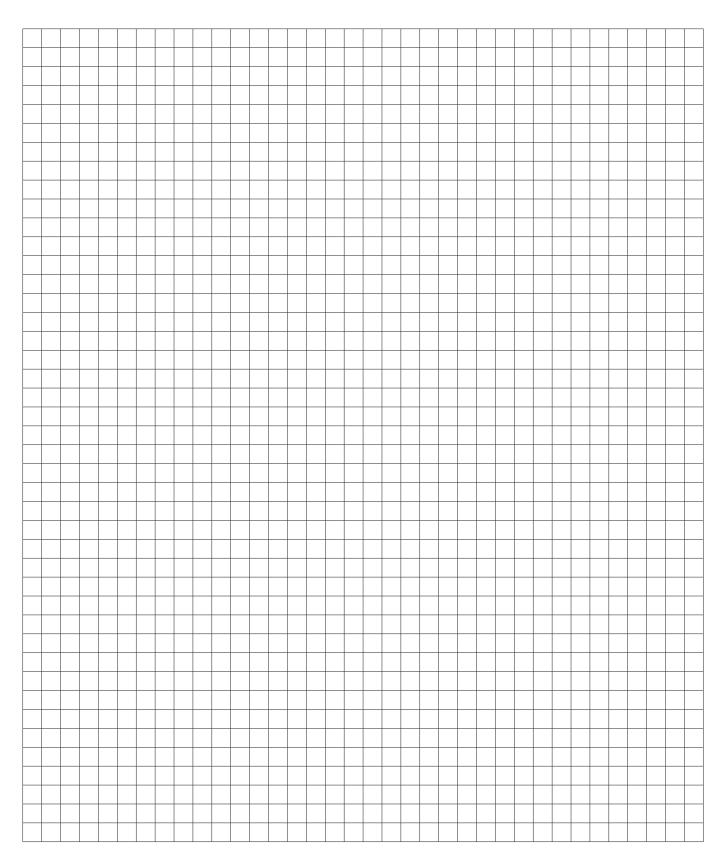
## 8.4.6 Command overview

| Command         |              | ode Function                                    | CANopen object   |
|-----------------|--------------|-------------------------------------------------|------------------|
| AC              | 0x65         | Load Command Acceleration                       | 0x6083           |
| ADL             | 0x00         | Analog Direction Left                           |                  |
| ADR             | 0x01         | Analog Direction Right                          |                  |
| APCMOD          | 0x02         | Analog Position Control Mode                    |                  |
| APL             | 0x03         | Activate/Deactivate Position Limits             |                  |
| CI              | 0xA2         | Load Current Integral Term                      |                  |
| CONTRACE        | 0x05         | Clear Output                                    |                  |
| CONTMOD         | 0x06         | Continuous Mode                                 | 0                |
| CORRIDOR        | 0x9D         | Load Corridor                                   | 0x6067           |
| DCE DCE         | 0x58<br>0x6B | Configuration Status                            |                  |
| DEC             | 0x6D         | Delayed Current Error Load Command Deceleration | 0x6084           |
| DEV             | 0x6F         | Load Deviation                                  | 0x0084           |
| DI              | 0x08         | Disable Drive                                   |                  |
| DIGOUT          | 0x0A         | Digital Output                                  |                  |
| DIRIN           | 0x0C         | Direction Input                                 |                  |
| EN              | 0x0F         | Enable Drive                                    |                  |
| ENCMOD          | 0x10         | Encoder Mode                                    |                  |
| ENCOUT          | 0x11         | Encoder Output                                  |                  |
| ENCRES          | 0x70         | Load Encoder Resolution                         | 0x608F           |
| ENCSPEED        | 0x12         | Encoder as speed sensor                         | 3,,000.          |
| ERROUT          | 0x14         | Error Output                                    |                  |
| FAULT STATUS    | 0xDF         | Get Fault Pin Status                            |                  |
| FCONFIG         | 0xD0         | Factory Configuration                           |                  |
| FHIX            | 0x35         | Find Hall Index                                 |                  |
| GAC             | 0x15         | Get Acceleration                                | 0x6083           |
| GADC            | 0xB3         | Get ADC Value                                   |                  |
| GADV            | 0xB2         | Get Analog Voltage                              |                  |
| GCC             | 0x18         | Get Continuous Current                          |                  |
| <u>GCI</u>      | 0x63         | Get Current Integral Term                       |                  |
| GCL             | 0x19         | Get Current Limit                               |                  |
| GCORRIDOR       | 0x62         | Get Corridor                                    | 0x6067           |
| <u>GDCE</u>     | 0x1A         | Get Delayed Current Error                       |                  |
| <u>GDEC</u>     | 0x1B         | Get Deceleration                                | 0x6084           |
| <u>GDEV</u>     | 0x1C         | Get Deviation                                   |                  |
| GEARMOD         | 0x1D         | Gearing Mode                                    |                  |
| GENCRES         | 0x1E         | Get Encoder Resolution                          | 0x608F           |
| GHOSP           | 0x24         | Get Homing Speed                                |                  |
| GI              | 0x26         | Get Velocity Integral Term                      | 0x60F9           |
| GKN             | 0x4D         | Get Speed Constant                              | 0x6510           |
| GMAV            | 0x27         | Get minimum analog voltage                      |                  |
| GMOD<br>CMOTTVD | 0x28         | Get Mode                                        | 0x6510           |
| GMOTTYP<br>GMV  | 0x29<br>0x2A | Get Motor Type                                  | OXOSTO           |
| GN              | 0x2B         | Get Minimum Velocity Get Actual Velocity        | 0x6069           |
| GNL             | 0x2C         | Get Negative Limit                              | 0x6005<br>0x607D |
| GOHIX           | 0x2E         | Go Hall Index                                   | 0.007D           |
| GOHOSEQ         | 0x2F         | Go Homing Sequence                              |                  |
| GOIX            | 0xA3         | Go Encoder Index                                |                  |
| GOPMOD          | 0xFE         | Get Operation Mode                              | 0x6061           |
| GPC             | 0x30         | Get Peak Current                                | 3,0001           |
| GPD             | 0x5E         | Get Position D-Term                             | 0x60FB           |
| GPL             | 0x31         | Get Positive Limit                              | 0x607D           |
| GPN             | 0x32         | Get Pulse Number                                |                  |
| GPOR            | 0x33         | Get Velocity Prop. Term                         | 0x60F9           |
| GPP             | 0x5D         | Get Position Prop. Term                         | 0x60FB           |
| GRC             | 0x34         | Get Real Current                                |                  |
| GRM             | 0x4E         | Get Motor Resistance                            | 0x6510           |
| GRPC            | 0x61         | Get Real Current                                |                  |
| GRU             | 0x60         | Get Real PWM Voltage                            | 0x60FA           |
| GSP             | 0x36         | Get Maximum Speed                               | 0x6081           |
| GSR             | 0x56         | Get Sampling Rate                               |                  |
| GSTN            | 0x38         | Get Step Number                                 |                  |
| GSTW            | 0x39         | Get Step Width                                  |                  |
| GTM             | 0x50         | Get Pole Pitch                                  |                  |
|                 |              | C . Dispared to                                 |                  |
| GU<br>GV        | 0x5F         | Get PWM Voltage                                 |                  |



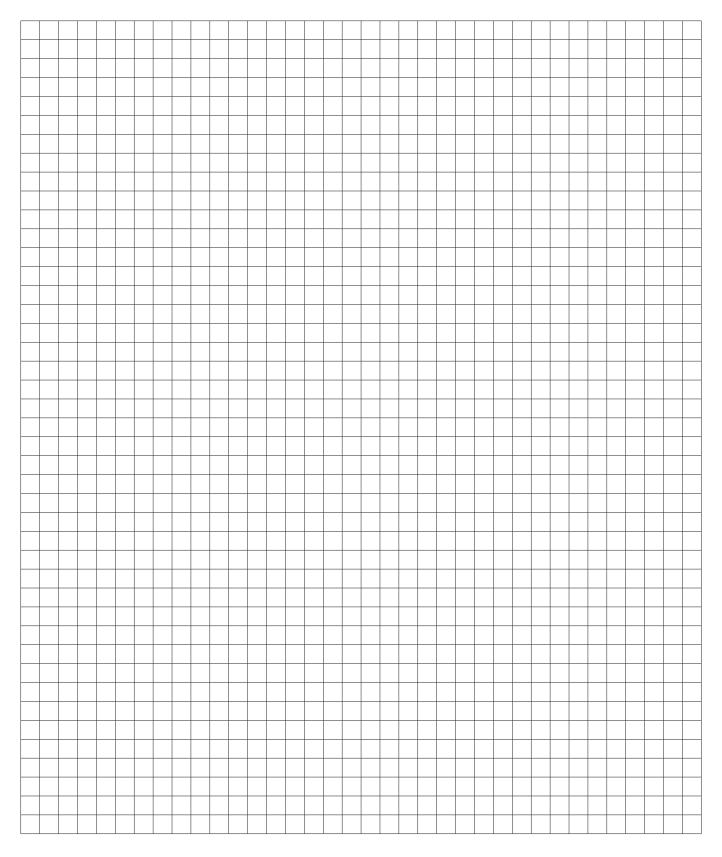

# **8.4 FAULHABER commands**

| Command      | Command      | code Function                       | CANopen object                          |
|--------------|--------------|-------------------------------------|-----------------------------------------|
| HA           | 0x72         | Home Arming                         | · , , , , , , , , , , , , , , , , , , , |
| HALLSPEED    | 0x3B         | Hall sensor as speed sensor         |                                         |
| HB           | 0x73         | Hard Blocking                       |                                         |
| HD           | 0x74         | Hard Direction                      |                                         |
| HL           | 0x75         | Hard Limit                          |                                         |
| HN           | 0x76         | Hard Notify                         |                                         |
| НО           | 0xB8         | Define Home Position                |                                         |
| HOC          | 0x5B         | Homing Configuration                |                                         |
| HOSP         | 0x78         | Load Homing Speed                   |                                         |
| HP           | 0x79         | Hard Polarity                       |                                         |
| 1            | 0x7B         | Load Velocity Integral Term         | 0x60F9                                  |
| ioc          | 0x5C         | I/O Configuration                   | 0,001 5                                 |
| KN           | 0x9E         | Load Motor Speed Constant           | 0x6510                                  |
| LA           | 0x84         | Load Absolute Position              | 0.0310                                  |
| LCC          | 0x80         | Load Continuous Current Term        |                                         |
| LL           | 0xB5         | Load Position Range Limits          | 0x607D                                  |
| LPC          | 0x81         | Load Peak Current Limit             | 0X007D                                  |
| LPN          | 0x81         | Load Pulse Number                   |                                         |
| LR           | 0x82<br>0xB6 | Load Relative Position              |                                         |
| M            | 0x86         | Initiate Motion                     |                                         |
|              |              |                                     |                                         |
| MAV          | 0x83         | Minimum Analog Voltage              |                                         |
| MV           | 0x85         | Minimum Velocity                    | 0                                       |
| <u>OPMOD</u> | 0xFD         | Operation Mode                      | 0x6060                                  |
| OST          | 0x57         | Operation Status                    | 0                                       |
| PD           | 0x9C         | Load Position Differential Term     | 0x60FB                                  |
| POR          | 0x89         | Load Velocity Proportional Term     | 0x60F9                                  |
| POS          | 0x40         | Get Actual Position                 | 0x6063                                  |
| POSOUT       | 0x4C         | Position Output                     | 0.6050                                  |
| PP           | 0x9B         | Load Position Proportional Term     | 0x60FB                                  |
| REFIN        | 0x41         | Reference Input                     |                                         |
| RESET        | 0x59         | Reset                               | 2.6542                                  |
| RM           | 0x9F         | Load Motor Resistance               | 0x6510                                  |
| RN           | 0x44         | Reset Node                          | 2 4242                                  |
| SAVE         | 0x53         | Save Parameters                     | 0x1010                                  |
| SETPLC       | 0x51         | Set PLC inputs                      |                                         |
| SETTTL       | 0x52         | Set TTL inputs                      |                                         |
| SHA          | 0x8A         | Set Home Arming for Homing Sequence |                                         |
| SHL          | 0x90         | Set Hard Limit for Homing Sequence  |                                         |
| SHN          | 0x9A         | Set Hard Notify for Homing Sequence |                                         |
| SIN          | 0xA0         | Sinus commutation                   |                                         |
| SO           | 0x45         | Set Output                          |                                         |
| SOR          | 0x8E         | Source for Velocity                 |                                         |
| SP           | 0x8F         | Load Maximum Speed                  | 0x607F                                  |
| SR           | 0xA4         | Load Sampling Rate                  |                                         |
| STEPMOD      | 0x46         | Stepper Motor Mode                  |                                         |
| STN          | 0x64         | Load Step Number                    |                                         |
| STW          | 0x77         | Load Step Width                     |                                         |
| <u>SWS</u>   | 0x5A         | Switch Status                       |                                         |
| TEM          | 0x47         | Get Temperature                     |                                         |
| TM           | 0xAF         | Load Pole Pitch                     |                                         |
| <u>TO</u>    | 0x55         | Toggle Output                       |                                         |
| <u>TPOS</u>  | 0x4B         | Get Target Position                 | 0x60FC                                  |
| <u>U</u>     | 0x92         | Set Output Voltage                  |                                         |
| V            | 0x93         | Select Velocity Mode                | 0x606B                                  |
| VER          | -            | Get Firmware Version                | 0x100A                                  |
| VOLTMOD      | 0x49         | Set Voltage Mode                    |                                         |
|              |              |                                     |                                         |




# **Notes**






# **Notes**





# **Notes**





# DR. FRITZ FAULHABER GMBH & CO. KG

Antriebssysteme

Daimlerstraße 23/25 71101 Schönaich · Germany Tel. +49(0)7031/638-0 Fax +49(0)7031/638-100 info@faulhaber.de www.faulhaber.com